Difference between revisions of "Android"
(→SDK packages: rename #SDK packages in the AUR to #Other SDK packages in the AUR and move it up) |
(→App development: remove #NVIDIA Tegra platform section as it is not relevant to Arch Linux anymore - packages are no longer in the AUR) |
||
Line 131: | Line 131: | ||
{{Note|If the plugins do not show up in Eclipse after the AUR package has been upgraded, then eclipse probably has out-of-date caches. Running {{ic|sudo eclipse -clean}} once should clear them. If the problem persists, uninstall eclipse and all the plugins, delete {{ic|/usr/share/eclipse}}, and reinstall everything.}} | {{Note|If the plugins do not show up in Eclipse after the AUR package has been upgraded, then eclipse probably has out-of-date caches. Running {{ic|sudo eclipse -clean}} once should clear them. If the problem persists, uninstall eclipse and all the plugins, delete {{ic|/usr/share/eclipse}}, and reinstall everything.}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Building == | == Building == |
Revision as of 06:25, 18 May 2018
Contents
- 1 Transferring files
- 2 App development
- 3 Building
- 4 Flashing
- 5 Troubleshooting
- 5.1 Android Studio: Android Virtual Devices show 'failed to load'.
- 5.2 Android Studio: 'failed to create the SD card'
- 5.3 Eclipse: During Debugging "Source not found"
- 5.4 ValueError: unsupported pickle protocol
- 5.5 libGL error: failed to load driver: swrast OR AVD doesn't load and no error message displayed
- 5.6 sh: glxinfo: command not found
- 5.7 Android Emulator: no keyboard input in xfwm4
Transferring files
To transfer files between your computer and an Android device via USB you can use:
- Media Transfer Protocol for modern Android devices
- USB Mass Storage mode for older devices
- the Android Debug Bridge
Otherwise files can be transferred with various protocols (SSH, FTP, Samba, HTTP). You just need to setup a client and a server (via apps Android can act as either one).
File sharing apps which have a Linux counterpart are:
- kdeconnect – integrates your Android device with the KDE desktop (featuring synced notifications & clipboard, multimedia control, and file/URL sharing).
- sendanywhereAUR – cross-platform file sharing
App development
The officially supported way to build Android apps is to use #Android Studio.[1]
Android Studio
Android Studio is the official Android development environment based on IntelliJ IDEA. It provides integrated Android developer tools for development and debugging.
You can install it with the android-studioAUR package.
- Make sure you properly set the Java environment otherwise android-studio will not start.
- If Android Studio shows up as a blank window try exporting
_JAVA_AWT_WM_NONREPARENTING=1
, see issue #57675.
The Android Studio Setup Wizard installs the required #SDK packages for you and and places the SDK by default in ~/Android/Sdk
.
To build apps from the command-line (using e.g. ./gradlew assembleDebug
) set the ANDROID_SDK_ROOT environment variable to your SDK location.
SDK packages
Android SDK packages can be installed directly from upstream using #Android Studio's SDK Manager or the sdkmanager command line tool (part of the Android SDK Tools). Some Android SDK packages are also available as AUR packages, they generally install to /opt/android-sdk/
.
The required SDK packages are:
Android SDK Package | SDK-style path | AUR package | AUR dummy | CLI tools |
---|---|---|---|---|
SDK Tools | tools | android-sdkAUR | android-sdk-dummyAUR | sdkmanager, apkanalizer, avdmanager, mksdcard, proguard |
SDK Build-Tools | build-tools;version | android-sdk-build-toolsAUR | android-sdk-build-tools-dummyAUR | apksigner, zipalign |
SDK Platform-Tools | platform-tools | android-sdk-platform-toolsAUR | android-sdk-platform-tools-dummyAUR | adb, #fastboot and systrace |
SDK Platform | platforms;android-level | android-platformAUR, older versions | unnecessary |
The android-tools package provides adb, #fastboot, e2fsdroid
and mke2fs.android
from the SDK Platform-Tools along with mkbootimg
and ext2simg
.
- Since the Android SDK contains 32-bit binaries, you must enable the multilib repository. Otherwise you will get
error: target not found: lib32-*
error messages. - If you choose to directly install SDK packages from upstream, install the AUR packages of the AUR dummy column to pull in the required dependencies.
Android Emulator
The Android Emulator is available as the emulator
SDK package, the android-emulatorAUR package. And there's also a dummmy package for it: android-emulator-dummyAUR.
To run the Android Emulator you need an Intel or ARM System Image. You can install them through the AUR[2], with the sdkmanager or using Android Studio's AVD Manager.
Other SDK packages in the AUR
The Android Support Library is now available online from Google's Maven repository.
You can also install it offline through the extras;android;m2repository
SDK package (also available as android-support-repositoryAUR).
Making /opt/android-sdk group-owned
The AUR packages install the SDK in /opt/android-sdk/
. This directory has root permissions, so keep in mind to run sdk manager as root, otherwise you will not be able to modify anything in this directory. If you intend to use it as a regular user, create the Android sdk users group:
# groupadd sdkusers
Add your user into this group:
# gpasswd -a <user> sdkusers
Change folder's group.
# chown -R :sdkusers /opt/android-sdk/
Change permissions of the folder so the user that was just added to the group will be able to write in it:
# chmod -R g+w /opt/android-sdk/
Re-login or as <user> log your terminal in to the newly created group:
$ newgrp sdkusers
Other IDEs
Android Studio is the official Android development environment based on IntelliJ IDEA. Alternatively, you can use Netbeans with the NBAndroid plugin. All are described below.
Netbeans
If you prefer using Netbeans as your IDE and want to develop Android applications, download the NBAndroid by going to Tools > Plugins > Settings.
Add the following URL: http://nbandroid.org/release81/updates/updates.xml
Then go to Available Plugins and install the Android and JUnit plugins. Once you have installed go to Tools > Options > Miscellaneous > Android.
and select the path where the SDK is installed (/opt/android-sdk
by default). That is it, now you can create a new Android project and start developing using Netbeans.
Eclipse
The official, but deprecated, Eclipse ADT plugin can be installed with the eclipse-androidAUR package.
- if you get a message about unresolvable dependencies, install Java manually and try again.
- as an alternative, you can install the ADT via eclipse's built in "add new software" command (see instructions on ADT site).
- if you are in real trouble, it is also possible to download Android SDK and use the bundled Eclipse. This usually works without problems.
- if you need to install extra SDK plugins not found in the AUR, you must change the file ownership of /opt/android-sdk first. You can do this with
# chgrp -R users /opt/android-sdk ; chmod -R 0775 /opt/android-sdk
(see File Permissions for more details).
Enter the path to the Android SDK Location in Windows > Preferences > Android.
sudo eclipse -clean
once should clear them. If the problem persists, uninstall eclipse and all the plugins, delete /usr/share/eclipse
, and reinstall everything.Building
Please note that these instructions are based on the official AOSP build instructions. Other Android-derived systems such as LineageOS will often require extra steps.
Required packages
To build any version of Android, you need to install these packages:
- lib32-gcc-libs git gnupg flex bison gperf sdl wxgtk2 squashfs-tools curl ncurses zlib schedtool perl-switch zip unzip libxslt python2-virtualenv bc rsync ncurses5-compat-libsAUR lib32-zlib lib32-ncurses lib32-readline lib32-ncurses5-compat-libsAUR
The aosp-develAUR metapackage provides them all for simple installation.
$ gpg --recv-keys 702353E0F7E48EDB
Additionally, LineageOS requires the following packages: xml2AUR, lzop, pngcrush, imagemagick
They can be installed with the lineageos-develAUR metapackage.
Java Development Kit
The required JDK version depends on the Android version you are building:
- For Android 7 and 8 (Nougat and Oreo), OpenJDK 8 is required, which is available with the jdk8-openjdk package.
- For Android 5 and 6 (Lollipop and Marshmallow), OpenJDK 7 is required, which is available with the jdk7-openjdk package.
Older versions require a working Oracle JDK installed on your build system. It will not work with OpenJDK.
- For Gingerbread through KitKat (2.3 - 4.4), Java 6 is required, which is available as jdk6AUR from the AUR.
- For Cupcake through Froyo (1.5 - 2.2), Java 5 is required, which is available as jdk5AUR from the AUR.
/usr/lib/jvm/java-version-openjdk-amd64
.
Set JAVA_HOME to avoid this requirement and match the Arch Linux installation path. Example:
$ export JAVA_HOME=/usr/lib/jvm/java-version-openjdkThis change will be valid only for the current terminal session.
Setting up the build environment
Create a directory to build.
$ mkdir ~/android $ cd ~/android
The Android build process expects python
to be python2. Create a python2 virtual environment and activate it:
$ virtualenv2 venv $ source venv/bin/activate
- This activation is only active for the current terminal session. The virtual env will be kept in the
venv
folder. - During build you may receive error pertaining to missing python modules. A quick and dirty fix is to symlink /usr/lib/python2.7/* to ~/android/venv/lib/python2.7/ (Change ~/android to reflect your build directory if different than above).
Example:
$ ln -s /usr/lib/python2.7/* ~/android/venv/lib/python2.7/
or (assuming build directory Data/Android_Build):
$ ln -s /usr/lib/python2.7/* /Data/Android_Build/venv/lib/python2.7/
Downloading the source code
This will clone the repositories. You only need to do this the first time you build Android, or if you want to switch branches.
- The
repo
has a-j
switch that operates similarly to the one used withmake
. Since it controls the number of simultaneous downloads, you should adjust the value depending on downstream network bandwidth.
- You will need to specify a branch (release of Android) to check out with the
-b
switch. If you leave the switch out, you will get the so-called master branch.
$ repo init -u https://android.googlesource.com/platform/manifest -b master $ repo sync -j4
$ repo sync -j8 -c
The -c
switch will only sync the branch which is specified in the manifest, which in turn is determined by the branch specified with the -b
switch, or the default branch set by the repository maintainer.
Wait a long time. Just the uncompiled source code, along with the .repo
and .git
directories that are used to keep track of it, are well over 10 GB. As of Android 6.0.1, the entire codebase totals 40 GB.
$ repo sync
Building the code
This should do what you need for AOSP:
$ source build/envsetup.sh $ lunch full-eng $ make -j4
If you run lunch without arguments, it will ask what build you want to create. Use -j with a number between one and two times number of cores/threads.
The build takes a very long time.
- Make sure you have enough RAM. Android will use the
/tmp
directory heavily. By default the size of the partition the/tmp
folder is mounted on is half the size of your RAM. If it fills up, the build will fail. 4GB of RAM or more is recommended. Alternatively, you can get rid of the tmpfs from fstab all together. - From the Android Building and Running guide:
"GNU make can handle parallel tasks with a -jN
argument, and it's common to use a number of tasks N that's between 1 and 2 times the number of hardware threads on the computer being used for the build. E.g. on a dual-E5520 machine (2 CPUs, 4 cores per CPU, 2 threads per core), the fastest builds are made with commands between make -j16
and make -j32
."
Testing the build
When finished, run/test the final image(s).
$ emulator
Creating a Flashable Image
To create an image that can be flashed it is necessary to:
make -j8 updatepackage
This will create a zip image under out/target/product/hammerhead
(hammerhead being the device name) that can be flashed.
Flashing
In some cases, you want to return to the stock Android after flashing custom ROMs to your Android mobile device. For flashing instructions of your device, please use XDA forums.
fastboot
Fastboot (as well as ADB) is included in the android-tools package.
fastboot
can be quite tricky, but you might want to browse XDA developers forums for a stock firmware, which is mostly a *.zip
file, but inside of it, comes with the firmware files and flash-all.sh
script. For example, Google Nexus firmwares include flash-all.sh
script or another example could be for OnePlus One - XDA thread, where you can find firmwares with included flash-all.sh
script.Samsung devices
Samsung devices can't be flashed using Fastboot tool. Alternatives are only Heimdall and Odin (by using Windows and VirtualBox).
Heimdall
Heimdall is a cross-platform open-source tool suite used to flash firmware (also known as ROMs) onto Samsung mobile devices and is also known as an alternative to Odin. It can be installed as heimdallAUR.
The flashing instructions can be found on Heimdall's GitHub page or on XDA forums.
Odin (Virtualbox)
It is also possible to restore firmware (Android) on the Samsung devices using Odin, but inside the VirtualBox.
Arch Linux (host) preparation:
- Install VirtualBox together with its extension pack and guest additions.
- Install your preferred, but compatible with Odin, Windows operating system (with VirtualBox guest additions) into a virtual hard drive using VirtualBox.
- Open VirtualBox settings of your Windows operating system, navigate to USB, then tick (or make sure it is ticked) Enable USB 2.0 (EHCI) Controller.
- At VirtualBox running Windows operating system, click in the menu bar Devices > USB Devices, then click on your Samsung mobile device from the list, which is connected to your computer via USB.
Windows (guest) preparation:
- Install Samsung drivers.
- Install Odin.
- Download required Samsung firmware (Android) for your smartphone model.
Check if configuration is working:
- Turn your device into Download mode and connect to your Linux machine.
- In virtual machine toolbar, select Devices > USB > ...Samsung... device.
- Open Odin. The white box (a big one at the bottom-left side) named Message, should print a line similar to this:
<ID:0/003> Added!!
which means that your device is visible to Odin & Windows operating system and is ready to be flashed.
Troubleshooting
Android Studio: Android Virtual Devices show 'failed to load'.
Make sure you've exported the variable ANDROID_HOME
as explained in #Android Studio.
Android Studio: 'failed to create the SD card'
If you try to run an AVD (Android Virtual Device) under x86_64 Arch and get the error above, install the lib32-gcc-libs package from the Multilib repository.
Eclipse: During Debugging "Source not found"
Most probably the debugger wants to step into the Java code. As the source code of Android does not come with the Android SDK, this leads to an error. The best solution is to use step filters to not jump into the Java source code. Step filters are not activated by default. To activate them: Window > Preferences > Java > Debug > Step Filtering. Consider to select them all. If appropriate you can add the android.* package. See the forum post for more information: http://www.eclipsezone.com/eclipse/forums/t83338.rhtml
ValueError: unsupported pickle protocol
One fix is to issue:
$ rm ~/.repopickle_.gitconfig
If that does not work, then try this:
$ find /path/to/android-root -name .repopickle_config -delete
libGL error: failed to load driver: swrast OR AVD doesn't load and no error message displayed
Sometimes, beginning to load an AVD will cause an error message similar to this to be displayed, or the loading process will appear to finish but no AVD will load and no error message will be displayed.
The AVD loads an incorrect version of libstdc++, you can remove the folder libstdc++ from ~/.android-sdk/emulator/lib64
(for 64-bit) or ~/.android-sdk/emulator/lib
(for 32-bit) , e.g.:
$ rm -r ~/.android-sdk/emulator/lib64/libstdc++
Note that in versions before Android Studio 3.0, this directory was in a different location:
$ rm -r ~/Android/Sdk/emulator/lib64/libstdc++
Alternatively you can set and export ANDROID_EMULATOR_USE_SYSTEM_LIBS in ~/.profile as:
export ANDROID_EMULATOR_USE_SYSTEM_LIBS=1
Reference: Android Studio user guide
Fix for the .desktop file might be achieved by using env command, prefixing the Exec line Desktop entries#Modify environment variables
env ANDROID_EMULATOR_USE_SYSTEM_LIBS=1
sh: glxinfo: command not found
Here's the full error:
Cannot launch AVD in emulator. Output: sh: glxinfo: command not found sh: glxinfo: command not found libGL error: unable to load driver: swrast_dri.so libGL error: failed to load driver: swrast X Error of failed request: BadValue (integer parameter out of range for operation) Major opcode of failed request: 154 (GLX) Minor opcode of failed request: 24 (X_GLXCreateNewContext) Value in failed request: 0x0 Serial number of failed request: 32 Current serial number in output stream: 33 QObject::~QObject: Timers cannot be stopped from another thread
You can try to install glxinfo (mesa-demos) but if your computer has enough power you could simply use software to render graphics. To do so, go to Tools > Android > AVD Manager, edit the AVD (click the pencil icon), then select Software - GLES 2.0 for Emulated Performance > Graphics.
Android Emulator: no keyboard input in xfwm4
In xfwm4, the vertical toolbar buttons window that is on the right of the emulator takes focus from the emulator and consumes keyboard events. (bug report)
You can use the workaround described in this Stack Overflow answer:
- Open the xfwm4 settings.
- Switch to the Focus tab.
- Change the Focus Model to "Focus follow mouse".
- Disable Automatically raise windows when they receive focus option below.