Difference between revisions of "Beginners' guide"

From ArchWiki
Jump to navigation Jump to search
(Hostname: rw)
(Hostname: just use an interwiki link)
Line 485: Line 485:
==== Hostname ====
==== Hostname ====
Set the hostname to your liking (e.g. ''arch''). This is the name of your computer
Set the [[Wikipedia:hostname|hostname]] to your liking (e.g. ''arch''):
  # hostnamectl set-hostname '''myhostname'''
  # hostnamectl set-hostname '''myhostname'''

Revision as of 05:16, 26 October 2012

ro:Ghidul începătorilor/Instalare zh-CN:Beginners' Guide/Installation

Tip: This is part of a multi-page article for The Beginners' Guide. Click here if you would rather read the guide in its entirety.


You are now presented with a shell prompt, automatically logged in as root.

Change the language

Tip: These are optional for the majority of users. Useful only if you plan on writing in your own language in any of the configuration files, if you use diacritical marks in the Wi-Fi password, or if you would like to receive system messages (e.g. possible errors) in your own language.

By default, the keyboard layout is set to us. If you have a non-US keyboard layout, run:

# loadkeys layout

...where layout can be fr, uk, be-latin1, etc. See here for a comprehensive list.

The font should also be changed, because most languages use more glyphs than the 26 letter English alphabet. Otherwise some foreign characters may show up as white squares or as other symbols. Note that the name is case-sensitive, so please type it exactly as you see it:

# setfont Lat2-Terminus16

By default, the language is set to English (US). If you would like to change the language for the install process (German, in this example), remove the # in front of the locale you want from /etc/locale.gen, along with English (US). Please choose the UTF-8 entry.

Use Template:Keypress to exit, and when prompted to save changes, press Template:Keypress and Template:Keypress to use the same filename.

# nano /etc/locale.gen
en_US.UTF-8 UTF-8
de_DE.UTF-8 UTF-8
# locale-gen
# export LANG=de_DE.UTF-8

Remember, Template:Keypress activates and deactivates the keymap.

Establish an internet connection

The dhcpcd network daemon is started automatically at boot and it will attempt to start a wired connection, if available. Try pinging a website to see if it was successful. And since Google is always on...

# ping -c 3 www.google.com
PING www.l.google.com ( 56(84) bytes of data.
64 bytes from wb-in-f105.1e100.net ( icmp_req=1 ttl=50 time=17.0 ms
64 bytes from wb-in-f105.1e100.net ( icmp_req=2 ttl=50 time=18.2 ms
64 bytes from wb-in-f105.1e100.net ( icmp_req=3 ttl=50 time=16.6 ms

--- www.l.google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 16.660/17.320/18.254/0.678 ms

If you get a ping: unknown host error, you will need to set up the network manually, as explained below.

Otherwise, move on to Prepare the storage drive.


Follow this procedure if you need to set up a wired connection via a static IP address.

If your computer is connected to an Ethernet network, in most cases, you will have one interface, called eth0. If you have additional network cards (apart from the one integrated on the motherboard, for example), their name will follow the sequence eth1, eth2, etc.

You need to know these settings:

  • Static IP address.
  • Subnet mask.
  • Gateway's IP address.
  • Name servers' (DNS) IP addresses.
  • Domain name (unless you're on a local LAN, in which case you can make it up).

Activate the connected Ethernet interface, e.g. for eth0:

# ip link set eth0 up

Add the address:

# ip addr add <ip address>/<subnetmask> dev <interface>

For example:

# ip addr add dev eth0

For more options, run man ip.

Add your gateway like this, substituting your own gateway's IP address:

# ip route add default via <ip address>

For example:

# ip route add default via

Edit resolv.conf, substituting your name servers' IP addresses and your local domain name:

# nano /etc/resolv.conf
nameserver 61.95.849.8
search example.com
Note: Currently, you may include a maximum of 3 nameserver lines.

You should now have a working network connection. If you do not, check the detailed Configuring Network page.


Follow this procedure if you need wireless connectivity (Wi-Fi) during the installation process.

The wireless drivers and utilities are now available to you in the live environment of the installation media. A good knowledge of your wireless hardware will be of key importance to successful configuration. Note that the following quick-start procedure executed at this point in the installation will initialize your wireless hardware for use in the live environment of the installation media. These steps (or some other form of wireless management) must be repeated from the actual installed system after booting into it.

Also note that these steps are optional if wireless connectivity is unnecessary at this point in the installation; wireless functionality may always be established later.

Note: The following examples use wlan0 for the interface and linksys for the ESSID. Remember to change these values according to your setup.

The basic procedure will be:

  • (optional) Identify the wireless interface:
# lspci | grep -i net

Or, if using a USB adapter:

# lsusb
  • Ensure udev has loaded the driver, and that the driver has created a usable wireless kernel interface with iwconfig:
Note: If you do not see output similar to this, then your wireless driver has not been loaded. If this is the case, you must load the driver yourself. Please see Wireless Setup for more detailed information.
# iwconfig
lo no wireless extensions.
eth0 no wireless extensions.
wlan0    unassociated  ESSID:""
         Mode:Managed  Channel=0  Access Point: Not-Associated
         Bit Rate:0 kb/s   Tx-Power=20 dBm   Sensitivity=8/0
         Retry limit:7   RTS thr:off   Fragment thr:off
         Power Management:off
         Link Quality:0  Signal level:0  Noise level:0
         Rx invalid nwid:0  Rx invalid crypt:0  Rx invalid frag:0
         Tx excessive retries:0  Invalid misc:0   Missed beacon:0

In this example, wlan0 is the available wireless interface.

  • Bring the interface up with:
# ip link set wlan0 up

A small percentage of wireless chipsets also require firmware, in addition to a corresponding driver. If the wireless chipset requires firmware, you are likely to receive this error when bringing the interface up:

# ip link set wlan0 up
SIOCSIFFLAGS: No such file or directory

If unsure, invoke dmesg to query the kernel log for a firmware request from the wireless chipset.

Example output from an Intel chipset which requires and has requested firmware from the kernel at boot:

# dmesg | grep firmware
firmware: requesting iwlwifi-5000-1.ucode

If there is no output, it may be concluded that the system's wireless chipset does not require firmware.

Warning: Wireless chipset firmware packages (for cards which require them) are pre-installed under /usr/lib/firmware in the live environment (on CD/USB stick) but must be explicitly installed to your actual system to provide wireless functionality after you reboot into it! Package installation is covered later in this guide. Ensure installation of both your wireless module and firmware before rebooting! See Wireless Setup if you are unsure about the requirement of corresponding firmware installation for your particular chipset.

Next, use netcfg's wifi-menu to connect to a network:

# wifi-menu wlan0

You should now have a working network connection. If you do not, check the detailed Wireless Setup page.

xDSL (PPPoE), analog modem or ISDN

If you have a router in bridge mode, run:

# pppoe-setup

To use these settings and connect to your ISP, run:

# pppoe-start

You may also need to adjust your resolv.conf:

# echo nameserver > /etc/resolv.conf

If you have a dial-up or ISDN connection, see Direct Modem Connection.

Behind a proxy server

If you are behind a proxy server, you will need to export the http_proxy and ftp_proxy environment variables. Click here for more information.

Prepare the storage drive

Warning: Partitioning can destroy data. You are strongly cautioned and advised to backup any critical data before proceeding.

Absolute beginners are encouraged to use a graphical partitioning tool. GParted is a good example, run from a "live" Linux distribution such as Parted Magic, Ubuntu, Linux Mint, etc. A drive should first be partitioned and the partitions should be formatted with a file system before rebooting.

It's possible to set up a swap file at any point after installation, so there is no need to decide on swap size now. See Swap for details if you wish to set up a swap partition now (but note that it's much easier to resize a file than a partition).

If you have already done so, proceed to Mount the partitions.

Otherwise, see the following example.


The Arch Linux install media includes the following partitioning tools:

  • gdisk – supports only GPT partition tables.
  • cfdisk – supports only MBR partition tables.

This example uses cfdisk, but it can easily be followed using gdisk, which will allow for GPT instead of MBR partitioning.

Notes regarding UEFI boot:
  • If you have a UEFI motherboard, you will need to create an extra UEFI System partition.
  • It is recommended to always use GPT for UEFI boot, as some UEFI firmwares do not allow UEFI-MBR boot.
Notes regarding GPT partitioning:
  • If you are not dual booting with Windows, then it is advisable to use GPT instead of MBR. Read GPT for a list of advantages.
  • If you have a BIOS motherboard (or plan on booting in BIOS compatibility mode) and you want to setup GRUB on a GPT-partitioned drive, you will need to create a 2 MiB "BIOS Boot Partition". Syslinux doesn't need one.
Note: If you are installing to a USB flash key, see Installing Arch Linux on a USB key.
# cfdisk /dev/sda

The example system will contain a 15 GB root partition, and a home partition for the remaining space.

It should be emphasized that partitioning is a personal choice and that this example is only for illustrative purposes. See Partitioning.



Here's how it should look like:

Name    Flags     Part Type    FS Type          [Label]       Size (MB)
sda1    Boot       Primary     Linux                             15360
sda2               Primary     Linux                             133000*

Double check and make sure that you are happy with the partition sizes as well as the partition table layout before continuing.

If you would like to start over, you can simply select Quit (or press Template:Keypress) to exit without saving changes and then restart cfdisk.

If you are satisfied, choose Write (or press Template:Keypress) to finalize and to write the partition table to the drive. Type "yes" and choose Quit (or press Template:Keypress) to exit cfdisk without making any more changes.

Simply partitioning is not enough; the partitions also need a filesystem. To format the partitions with an ext4 filesystem:

Warning: Double check and triple check that it's actually /dev/sda1 that you want to format.
# mkfs.ext4 /dev/sda1
# mkfs.ext4 /dev/sda2

Mount the partitions

Each partition is identified with a number suffix. For example, sda1 specifies the first partition of the first drive, while sda designates the entire drive.

To see the current partition layout:

# lsblk /dev/sda

Pay attention, because the mounting order is important.

First, mount the root partition on /mnt. Following the example above (yours may be different), it would be:

# mount /dev/sda1 /mnt

Then mount the /home partition and any other separate partition (/boot, /var, etc), if you have any:

# mkdir /mnt/home
# mount /dev/sda2 /mnt/home

In case you have a separate /boot partition:

# mkdir /mnt/boot
# mount /dev/sdaX /mnt/boot

In case you have a UEFI motherboard, mount the UEFI partition:

# mkdir /mnt/boot/efi
# mount /dev/sdaX /mnt/boot/efi

Select a mirror

Before installing, you may want to edit the mirrorlist file and place your preferred mirror first. A copy of this file will be installed on your new system by pacstrap as well, so it's worth getting it right.

# nano /etc/pacman.d/mirrorlist
## Arch Linux repository mirrorlist
## Sorted by mirror score from mirror status page
## Generated on 2012-MM-DD

Server = http://mirror.example.xyz/archlinux/$repo/os/$arch

If you want, you can make it the only mirror available by getting rid of everything else (using Template:Keypress), but it's usually a good idea to have a few more, in case the first one goes offline.

  • Use the Mirrorlist Generator to get an updated list for your country. HTTP mirrors are faster than FTP, because of something called keepalive. With FTP, pacman has to send out a signal each time it downloads a package, resulting in a brief pause. For other ways to generate a mirror list, see Sorting mirrors and Reflector.
  • Arch Linux MirrorStatus reports various aspects about the mirrors such as network problems with mirrors, data collection problems, the last time mirrors have been synced, etc.
  • Whenever in the future you change your list of mirrors, always remember to force pacman to refresh all package lists with pacman -Syy. This is considered to be good practice and will avoid possible headaches. See Mirrors for more information.
  • If you're using an older installation medium, your mirrorlist might be outdated, which might lead to problems when updating Arch Linux (see FS#22510). Therefore it is advised to obtain the latest mirror information as described above.
  • Some issues have been reported in the Arch Linux forums regarding network problems that prevent pacman from updating/synchronizing repositories (see [1] and [2]). When installing Arch Linux natively, these issues have been resolved by replacing the default pacman file downloader with an alternative (see Improve Pacman Performance for more details). When installing Arch Linux as a guest OS in VirtualBox, this issue has also been addressed by using "Host interface" instead of "NAT" in the machine properties.

Install the base system

The base system is installed using the pacstrap script.

The -i switch can be omitted if you wish to install every package from the base and base-devel groups without prompting.

# pacstrap -i /mnt base base-devel
Note: If pacman fails to verify your packages, check the system time with cal. If the system date is invalid (e.g. it shows year 2010), signing keys will be considered expired (or invalid), signature checks on packages will fail and installation will be interrupted. Make sure to correct the system time, either by doing so manually or with the ntp client, and retry running the pacstrap command. Refer to Time page for more information on correcting system time.
  • base: Software packages from the [core] repo to provide the minimal base environment.
  • base-devel: Extra tools from [core] such as make, and automake. Most beginners should choose to install it, as it will likely be needed to expand the system. The base-devel group will be required to install software from the Arch User Repository.

This will give you a basic Arch system. Other packages can be installed later using pacman.

Generate an fstab

Generate an fstab file with the following command. If you prefer to use UUIDs or labels, add the -U or -L option, respectively. It's also a good idea to check it before continuing:

Note: If you encounter errors running genfstab or later in the install process, do not run genfstab again; just edit the fstab file.
# genfstab -p /mnt >> /mnt/etc/fstab
# nano /mnt/etc/fstab

Only the root (/) partition needs 1 for the last field. Everything else should have either 2 or 0 (see fstab#Field definitions).

Also, data=ordered should be removed. This option will be used automatically whether you specify it or not. No point cluttering up your fstab.

Chroot and configure the base system

Next, we chroot into our newly installed system:

# arch-chroot /mnt

At this stage of the installation, you will configure the primary configuration files of your Arch Linux base system. These can either be created if they do not exist, or edited if you wish to change the defaults.

Closely following and understanding these steps is of key importance to ensure a properly configured system.


Locales are used by glibc and other locale-aware programs or libraries for rendering text, correctly displaying regional monetary values, time and date formats, alphabetic idiosyncrasies, and other locale-specific standards.

There are two files that need editing: locale.gen and locale.conf.

  • The locale.gen file is empty by default (everything is commented out) and you need to remove the # in front of the line(s) you want. You may uncomment more lines than just English (US), as long as you choose their UTF-8 encoding:
# nano /etc/locale.gen
en_US.UTF-8 UTF-8
de_DE.UTF-8 UTF-8
# locale-gen

This will run on every glibc upgrade, generating all the locales specified in /etc/locale.gen.

  • The locale.conf file doesn't exist by default. Setting only LANG should be enough. It will act as the default value for all other variables.
# echo LANG=en_US.UTF-8 > /etc/locale.conf
# export LANG=en_US.UTF-8
Note: If you set some other language than English at the beginning of the install, the above commands would be something like:
# echo LANG=de_DE.UTF-8 > /etc/locale.conf
# export LANG=de_DE.UTF-8

To use other LC_* variables, first run locale to see the available options. An advanced example can be found here.

Warning: Using the LC_ALL variable is strongly discouraged because it overrides everything.

Console font and keymap

If you set a keymap at the beginning of the install process, load it now, as well, because the environment has changed. For example:

# loadkeys de-latin1
# setfont Lat2-Terminus16

To make them available after reboot, edit vconsole.conf:

# nano /etc/vconsole.conf
  • KEYMAP – Please note that this setting is only valid for your TTYs, not any graphical window managers or Xorg.
  • FONT – Available alternate console fonts reside in /usr/share/kbd/consolefonts/. The default (blank) is safe, but some foreign characters may show up as white squares or as other symbols. It's recommended that you change it to Lat2-Terminus16, because according to /usr/share/kbd/consolefonts/README.Lat2-Terminus16, it claims to support "about 110 language sets".
  • FONT_MAP – Defines the console map to load at boot. Read man setfont. The default (blank) is safe.

See Console fonts and man vconsole.conf for more information.

Time zone

Available time zones and subzones can be found in the /usr/share/zoneinfo/<Zone>/<SubZone> directories.

To view the available <Zone>, check the directory /usr/share/zoneinfo/:

# ls /usr/share/zoneinfo/

Similarly, you can check the contents of directories belonging to a <SubZone>:

# ls /usr/share/zoneinfo/Europe

Create a symbolic link /etc/localtime to your zone file /usr/share/zoneinfo/<Zone>/<SubZone> using this command:

# ln -s /usr/share/zoneinfo/<Zone>/<SubZone> /etc/localtime


# ln -s /usr/share/zoneinfo/Europe/Minsk /etc/localtime

Hardware clock

Set the hardware clock mode uniformly between your operating systems. Otherwise, they may overwrite the hardware clock and cause time shifts.

You can generate /etc/adjtime automatically by using one of the following commands:

  • UTC (recommended)
Note: Using UTC for the hardware clock does not mean that software will display time in UTC.
# hwclock --systohc --utc
  • localtime (discouraged; used by default in Windows)
Warning: Using localtime may lead to several known and unfixable bugs. However, there are no plans to drop support for localtime.
# hwclock --systohc --localtime

If you have (or planning on having) a dual boot setup with Windows:

  • Recommended: Set both Arch Linux and Windows to use UTC. A quick registry fix is needed. Also, be sure to prevent Windows from synchronizing the time on-line, because the hardware clock will default back to localtime. If you want such functionality (NTP sync), you should use ntpd on your Arch Linux installation instead.
  • Not recommended: Set Arch Linux to localtime and disable any time-related services, like ntpd.service. This will let Windows take care of hardware clock corrections and you will need to remember to boot into Windows at least two times a year (in Spring and Autumn) when DST kicks in. So please don't ask on the forums why the clock is one hour behind or ahead if you usually go for days or weeks without booting into Windows.

Kernel modules

Tip: This is just an example, you do not need to set it. All needed modules are automatically loaded by udev, so you will rarely need to add something here. Only add modules that you know are missing.

For kernel modules to load during boot, place a *.conf file in /etc/modules-load.d/, with a name based on the program that uses them.

# nano /etc/modules-load.d/virtio-net.conf
# Load 'virtio-net.ko' at boot.


If there are more modules to load per *.conf, the module names can be separated by newlines. A good example are the VirtualBox Guest Additions.

Empty lines and lines starting with # or ; are ignored.


Set the hostname to your liking (e.g. arch):

# hostnamectl set-hostname myhostname
Note: You no longer need to edit /etc/hosts, nss-myhostname will already provide host name resolution, and is installed on all systems by default.

Configure the network

You need to configure the network again, but this time for your newly installed environment. The procedure and prerequisites are very similar to the one described above, except we are going to make it persistent and automatically run at boot.

Note: For more in-depth information on network configration, visit Configuring Network and Wireless Setup.


Dynamic IP

If you only use a single fixed wired network connection, you do not need a network management service and can simply enable the dhcpcd service:

# systemctl enable dhcpcd@.service

Alternatively, you can use netcfg's net-auto-wired, which gracefully handles dynamic connections to new networks:

# pacman -S ifplugd
# cd /etc/network.d
# ln -s examples/ethernet-dhcp .
# systemctl enable net-auto-wired.service
Static IP

Install ifplugd, which is required for net-auto-wired:

# pacman -S ifplugd

Copy a sample profile from /etc/network.d/examples to /etc/network.d:

# cd /etc/network.d
# cp examples/ethernet-static .

Edit the profile as needed:

# nano ethernet-static

Enable the net-auto-wired service:

# systemctl enable net-auto-wired.service


You will need to install other programs to configure and manage wireless network profiles, such as netcfg.

NetworkManager and Wicd are other popular alternatives.

  • Install the required packages:
# pacman -S wireless_tools wpa_supplicant wpa_actiond dialog

If your wireless adapter requires a firmware (as described in the above Establish an internet connection section and also here), install the package containing your firmware. For example:

# pacman -S zd1211-firmware
  • Connect to the network with wifi-menu (optionally checking the interface name with ip link, but usually it's wlan0), which will generate a profile file in /etc/network.d named after the SSID. There are also templates available in /etc/network.d/examples/ for manual configuration.
# wifi-menu
  • Enable the net-auto-wireless service, which will connect to known networks and gracefully handle roaming and disconnects:
# systemctl enable net-auto-wireless.service
Note: Netcfg also provides net-auto-wired, which can be used in conjunction with net-auto-wireless.
  • Make sure that the correct wireless interface (usually wlan0) is set in /etc/conf.d/netcfg:
# nano /etc/conf.d/netcfg

It is also possible to define a list of network profiles that should be automatically connected, using the AUTO_PROFILES variable in /etc/conf.d/netcfg. If AUTO_PROFILES is not set, all known wireless networks will be tried.

xDSL (PPPoE), analog modem or ISDN

For xDSL, dial-up and ISDN connections, see Direct Modem Connection.

Configure pacman

Pacman is the Arch Linux package manager. It is highly recommended to study and learn how to use it. Read man pacman, have a look at the pacman article, or check out the Pacman Rosetta article for a comparison to other popular package managers.

For repository selections and pacman options, edit pacman.conf:

Note: When choosing repos, be sure to uncomment both the [repo_name] header lines, as well as the Include lines. Failure to do so will result in the selected repository being omitted! This is a very common error.
# nano /etc/pacman.conf

Most people will want to use [core], [extra] and [community].

If you installed Arch Linux x86_64, it's recommended that you enable the [multilib] repository, as well (to be able to run both 32 bit and 64 bit applications):

Include = /etc/pacman.d/mirrorlist

See Official Repositories for more information, including details about the purpose of each repository.

For software unavailable directly through pacman, see Arch User Repository.

Create an initial ramdisk environment

Tip: Most users can skip this step and use the defaults provided in mkinitcpio.conf. The initramfs image (from the /boot folder) has already been generated based on this file when the linux package (the Linux kernel) was installed earlier with pacstrap.

Here you need to set the right hooks if the root is on a USB drive, if you use RAID, LVM, or if /usr is on a separate partition.

Edit /etc/mkinitcpio.conf as needed and re-generate the initramfs image with:

# mkinitcpio -p linux

Set the root password and add a regular user

Set the root password with:

# passwd
Warning: Linux is a multi-user operating system. You should not perform everyday tasks using the root account. It is considered a very poor practice and could be extremely dangerous. The root account should only be used for administrative tasks.

Then add a normal user account. For a more interactive way, you can use adduser. However, below is the non-interactive way. The user archie is just an example.

# useradd -m -g users -s /bin/bash archie
# passwd archie

If you wish to start over, use userdel. The -r option will remove the user's home directory and its content, along with the user's settings (the so-called "dot" files).

# userdel -r archie

For more information, read Users and Groups.

Install and configure a bootloader

For BIOS motherboards

For BIOS systems, there are three bootloaders - Syslinux, GRUB, and LILO. Choose the bootloader as per your convenience. Below only Syslinux and GRUB are explained.

  • Syslinux is (currently) limited to loading only files from the partition where it was installed. Its configuration file is considered to be easier to understand. An example configuration can be found here.
  • GRUB is more feature-rich and supports more complex scenarios. Its configuration file(s) is more similar to a scripting language, which may be difficult for beginners to manually write. It is recommended that they automatically generate one.

Install the syslinux package and then use the syslinux-install_update script to automatically install the files (-i), mark the partition active by setting the boot flag (-a), and install the MBR boot code (-m):

Note: If you have partitioned the drive as GPT, install gptfdisk package, as well (pacman -S gptfdisk), because it contains sgdisk, which will be used to set the GPT-specific boot flag.
# pacman -S syslinux
# syslinux-install_update -iam

Configure syslinux.cfg to point to the right root partition. This step is vital. If it points to the wrong partition, Arch Linux will not boot. Change /dev/sda3 to reflect your root partition (if you partitioned your drive as we did in the example, your root partition is sda1). Do the same for the fallback entry.

# nano /boot/syslinux/syslinux.cfg
LABEL arch
        APPEND root=/dev/sda3 ro

For more information on configuring and using Syslinux, see Syslinux.

Note: For GPT-partitioned drives on BIOS motherboards, GRUB needs a 2 MiB "BIOS Boot Partition".
Note: Do do not use /dev/sdaX in the below command. If you installed Arch on another drive (e.g. /dev/sdb), you should use that. But make sure that it's the first drive to boot from the BIOS settings.
# pacman -S grub-bios
# grub-install --target=i386-pc --recheck /dev/sda
# cp /usr/share/locale/en\@quot/LC_MESSAGES/grub.mo /boot/grub/locale/en.mo

While using a manually created grub.cfg is absolutely fine, it's recommended that beginners automatically generate one:

Tip: To automatically search for other operating systems on your computer, install os-prober (pacman -S os-prober) before running the next command.
# grub-mkconfig -o /boot/grub/grub.cfg

For more information on configuring and using GRUB, see GRUB.

For UEFI motherboards

For UEFI boot, the drive needs to be GPT-partitioned, and a UEFI System Partition (512 MiB or higher, FAT32, type EF00) must be present and mounted on /boot/efi. If you have followed this guide from the beginning, you've already done all of these.

While there are other UEFI bootloaders available, using EFISTUB is recommended. Below are instructions for setting up EFISTUB and GRUB.

Note: Syslinux does not yet support UEFI.

The Linux kernel can act as its own bootloader using EFISTUB. This is the UEFI boot method recommended by developers and simpler compared to grub-efi-x86_64. The below steps set up rEFInd (a fork of rEFIt) to provide a menu for EFISTUB kernels, as well as for booting other UEFI bootloaders. You can also use gummiboot instead of rEFInd. Both rEFInd and gummiboot can detect Windows UEFI bootloader in case of dual-boot.

1. Boot in UEFI mode and load efivars kernel module before chrooting:

# modprobe efivars      # before chrooting

2. Mount the UEFISYS partition at /mnt/boot/efi, chroot and copy the kernel and initramfs files to /boot/efi.

3. Every time the kernel and initramfs files are updated in /boot, they need to be updated in /boot/efi/EFI/arch. This can be automated either using systemd or using incron (for non-systemd setups).

4. Install the following packages:

# pacman -S refind-efi efibootmgr

5. Install rEFInd to the UEFISYS partition (summarized from UEFI Bootloaders#Using rEFInd):

# mkdir -p /boot/efi/EFI/refind
# cp /usr/lib/refind/refindx64.efi /boot/efi/EFI/refind/refindx64.efi
# cp /usr/lib/refind/config/refind.conf /boot/efi/EFI/refind/refind.conf
# cp -r /usr/share/refind/icons /boot/efi/EFI/refind/icons

6. Create a refind_linux.conf file with the kernel parameters to be used by rEFInd:

# nano /boot/efi/EFI/arch/refind_linux.conf
"Boot to X"          "root=/dev/sdaX ro rootfstype=ext4 systemd.unit=graphical.target"
"Boot to console"    "root=/dev/sdaX ro rootfstype=ext4 systemd.unit=multi-user.target"
Note: refind_linux.conf should be in the same directory as the kernel and initramfs files, not the directory refindx64.efi resides.

7. Add rEFInd to UEFI boot menu using efibootmgr.

Warning: Using efibootmgr on Apple Macs may brick the firmware and may need reflash of the motherboard ROM. For Macs, use mactel-bootAUR, or "bless" from within Mac OS X.
# efibootmgr -c -g -d /dev/sdX -p Y -w -L "rEFInd" -l '\EFI\refind\refindx64.efi'
Note: In the above command, X and Y denote the drive and partition of the UEFISYS partition. For example, in /dev/sdc5, X is "c" and Y is "5".

8. (Optional) As a fallback, in case efibootmgr created boot entry does not work, copy refindx64.efi to /boot/efi/EFI/boot/bootx64.efi as follows:

# cp -r /boot/efi/EFI/refind/* /boot/efi/EFI/boot/
# mv /boot/efi/EFI/boot/refindx64.efi /boot/efi/EFI/boot/bootx64.efi
Note: In case you have a system with 32-bit EFI, like pre-2008 Macs, install grub-efi-i386 instead, and use --target=i386-efi.
# pacman -S grub-efi-x86_64 efibootmgr
# grub-install --target=x86_64-efi --efi-directory=/boot/efi --bootloader-id=arch_grub --recheck
# cp /usr/share/locale/en\@quot/LC_MESSAGES/grub.mo /boot/grub/locale/en.mo

The next command creates a menu entry for GRUB in the UEFI boot menu. However, as of grub-efi-x86_64 version 2.00, grub-install tries to create a menu entry, so running efibootmgr may not be necessary. See UEFI#efibootmgr for more info.

# efibootmgr -c -g -d /dev/sdX -p Y -w -L "Arch Linux (GRUB)" -l '\EFI\arch_grub\grubx64.efi'

Next, while using a manually created grub.cfg is absolutely fine, it's recommended that beginners automatically generate one:

Tip: To automatically search for other operating systems on your computer, install os-prober (pacman -S os-prober) before running the next command.
# grub-mkconfig -o /boot/grub/grub.cfg

For more information on configuring and using GRUB, see GRUB.

Update the system

Warning: System updates should be performed with care. It is very important to read and understand this before proceeding.

Often, the developers will provide important information about required configurations and modifications for known issues. The Arch Linux user is expected to consult these places before performing an upgrade:

  • Arch news. If you did not read this before an upgrade and you encounter an error, check the news before you post a question on the forum!
  • Announce mailing list.

Sync, refresh the package database, and upgrade your entire system with:

# pacman -Syu

Or, same thing:

# pacman --sync --refresh --sysupgrade

If you are prompted to upgrade pacman itself at this point, respond by pressing Template:Keypress, and then reissue the pacman -Syu command when finished.

Note: Occasionally, configuration changes may take place requiring user action during an update; read pacman's output for any pertinent information. See Pacnew and Pacsave Files for more details.

Keep in mind that Arch is a rolling release distribution. This means the user doesn't have to reinstall or perform elaborate system rebuilds to upgrade to the newest version. Issuing pacman -Syu periodically (and noting the above warning) keeps the entire system up-to-date and on the bleeding edge. At the end of this upgrade, the system will be completely current.

See Pacman and FAQ#Package Management for answers regarding updating and managing packages.

Unmount the partitions and reboot

Exit from the chroot environment:

# exit

Since the partitions are mounted under /mnt, we use the following command to unmount them:

# umount /mnt/{boot,home,}

Reboot the computer:

# reboot
Tip: Be sure to remove the installation media, otherwise you will boot back into it.

Template:Beginners' Guide navigation