Difference between revisions of "Beginners' Guide/Installation (Português)"

From ArchWiki
Jump to: navigation, search
m (Preparando os Discos)
(Exemplo)
Line 226: Line 226:
 
==== Exemplo ====
 
==== Exemplo ====
  
A mídia de instalação do Arch Linux provê as seguinter ferramentas de particionamento
+
A mídia de instalação do Arch Linux provê as seguinter ferramentas de particionamento:
 
+
The Arch Linux install media includes the following partitioning tools:
+
  
 
* [[Wikipedia:gdisk|gdisk]] – Suporta apenas tabelas de partição [[GPT]].
 
* [[Wikipedia:gdisk|gdisk]] – Suporta apenas tabelas de partição [[GPT]].
Line 238: Line 236:
 
Este exemplo utiliza o '''cfdisk''', mas ele pode ser facilmente adaptado para o '''gdisk''', que permite o perticionamento em tabelas do tipo GPT.
 
Este exemplo utiliza o '''cfdisk''', mas ele pode ser facilmente adaptado para o '''gdisk''', que permite o perticionamento em tabelas do tipo GPT.
  
{{Box BLUE|Notas sobre o boot [[UEFI]]|
+
{{Box BLUE|Notas sobre o boot [[UEFI]]:|
 
* Se você possui uma placa-mãe com suporte a UEFI, você precisará criar uma partição  [[Unified Extensible Firmware Interface#Create an UEFI System Partition_in_Linux|UEFI]] extra.
 
* Se você possui uma placa-mãe com suporte a UEFI, você precisará criar uma partição  [[Unified Extensible Firmware Interface#Create an UEFI System Partition_in_Linux|UEFI]] extra.
* It is recommended to always use GPT for UEFI boot, as some UEFI firmwares do not allow UEFI-MBR boot.}}
+
* É recomendado sempre usar GPT para boot UEFI, pois algumas firmwares UEFI não permitem inicialização EFI-MBR.}}
  
{{Box BLUE|Notes regarding [[GPT]] partitioning:|
+
{{Box BLUE|Notas sobre o particionamento [[GPT]]:|
* If you are not dual booting with Windows, then it is advisable to use GPT instead of MBR. Read [[GPT]] for a list of advantages.
+
* Se você não está configurando dual boot com o Windows, utilize GPT ao invés de MBR. Leia a lista de vantagens da [[GPT]].
* If you have a BIOS motherboard (or plan on booting in BIOS compatibility mode) and you want to setup GRUB on a GPT-partitioned drive, you will need to create a 2 MiB "[[GRUB#GPT_specific_instructions|BIOS Boot Partition]]". Syslinux doesn't need one.}}
+
* Se você possui uma placa mãe com BIOS(ou planeja iniciar em modo de compatibilidade BIOS) e deseja configurar o GRUP em um driver particionado via GPT, você precisará criar uma [[GRUB#GPT_specific_instructions|Partiçaõ de boot BIOS]] de 2 MiB. O Syslinux não precisa de uma.}}
  
{{Note|If you are installing to a USB flash key, see [[Installing Arch Linux on a USB key]].}}
+
{{Note|Caso esteja instalando o Arch de um driver USB, veja [[Installing Arch Linux on a USB key (Português)|Instalando o Arch Linux de um driver USB]].}}
  
 
  # cfdisk /dev/sda
 
  # cfdisk /dev/sda
  
The example system will contain a 15 GB root ({{ic|/}}) partition, a 1 GB {{ic|swap}} partition, and a {{ic|/home}} partition for the remaining space.
+
Este exemplo mostrará um sistema que terá 15 GB de partição raíz ({{ic|/}}), 1GB de partição {{ic|swap}}, e o espaço remanescente será destinado ao {{ic|/home}}.
  
It should be emphasized that partitioning is a personal choice and that this example is only for illustrative purposes. See [[Partitioning]].
+
Vale enfatizar que particionamento de disco trata-se de gosto pessoal, e que este exemplo existe para propósitos ilustrativos. Veja [[Partitioning (Português)|Particionamento]].
  
'''Root:'''
+
'''Raíz:'''
  
* Choose New (or press {{Keypress|N}}) {{Keypress|Enter}} for Primary – type in "15360" {{Keypress|Enter}} for Beginning – {{Keypress|Enter}} for Bootable.
+
* Escolha Nova (ou pressione {{Keypress|N}}) - {{Keypress|Enter}} para Primaria - digite "15360" - {{Keypress|Enter}} para "No início" -  {{Keypress|Enter}} para Bootável.
  
 
'''Swap:'''
 
'''Swap:'''
  
* Press the down arrow to move to the free space area.
+
* Pressione seta para baixo para mover a seleção para o "espaço livre" no disco rígido.
* Choose New (or press {{Keypress|N}}) {{Keypress|Enter}} for Primary – type in "1024" – {{Keypress|Enter}} for Beginning.
+
* Escolha Nova (ou pressione {{Keypress|N}}) - {{Keypress|Enter}} para Primaria - digite "1024" – {{Keypress|Enter}} para "No início".
* Choose Type (or press {{Keypress|T}}) – press any key to scroll down the list – {{Keypress|Enter}} for 82.
+
* Escolha o tipo (ou pressione {{Keypress|T}}) – pressione qualquer tecla para rolar a lista para baixo - {{Keypress|Enter}} para 82.
  
 
'''Home:'''
 
'''Home:'''
  
* Press the down arrow to move to the free space area.
+
* Pressione seta para baixo para mover a seleção para o "espaço livre" no disco rígido.
* Choose New (or press {{Keypress|N}}) – {{Keypress|Enter}} for Primary – {{Keypress|Enter}} to use the rest of the drive (or you could type in the desired size).
+
* Escolha Nova (ou pressione {{Keypress|N}}) – {{Keypress|Enter}} para Primaria - {{Keypress|Enter}} para usar o restante do espaço em disco.
  
Here's how it should look like:
+
O resultado do particionamento ficara parecido com este:
  
 
  Name    Flags    Part Type    FS Type          [Label]      Size (MB)
 
  Name    Flags    Part Type    FS Type          [Label]      Size (MB)
Line 277: Line 275:
 
  sda3              Primary    Linux                            133000*
 
  sda3              Primary    Linux                            133000*
  
Double check and make sure that you are happy with the partition sizes as well as the partition table layout before continuing.
+
Verifique novamente, e se certifique que você está contente com os tamanhos das partições assim como o layout delas antes de continuar.
  
If you would like to start over, you can simply select Quit (or press {{Keypress|Q}}) to exit without saving changes and then restart cfdisk.
+
Se quiser reiniciar o processo, você pode simplesmente selecionar "Sair" (ou pressionar {{Keypress|Q}}) para sair do particionador sem salvar quaisquer alterações feitas no disco. Depois, basta executar o cfdisk novamente.
  
If you are satisfied, choose Write (or press {{Keypress|Shift+W}}) to finalize and to write the partition table to the drive. Type "yes" and choose Quit (or press {{Keypress|Q}}) to exit cfdisk without making any more changes.
+
Se tiver satisfeito, selecione Gravar (ou pressione {{Keypress|Shift+W}}) para finalizar a gravação da tabela de partições para o disco. Digite "Sim"(yes) e selecione Sair (ou pressionar {{Keypress|Q}}) para sair do cfdisk.
  
Simply partitioning is not enough; the partitions also need a [[File Systems|filesystem]]. To format the partitions with an ext4 filesystem:
+
Particionar não é o bastante; As partições precisam de um [[File Systems (Português)|sistema de arquivos]]. Para formatar as partições com um sistema de arquivos ext4:
  
{{Warning|Double check and triple check that it's actually {{ic|/dev/sda1}} that you want to format.}}
+
{{Warning|Verifique e "re-Verifique" se é realmente a partição {{ic|/dev/sda1}} que você deseja formatar. Pode mudar de caso para caso.}}
  
 
  # mkfs.ext4 /dev/sda1
 
  # mkfs.ext4 /dev/sda1
 
  # mkfs.ext4 /dev/sda3
 
  # mkfs.ext4 /dev/sda3
  
Format and activate the swap partition:
+
E para formatar e ativar a partição de swap:
  
 
  # mkswap /dev/sda2
 
  # mkswap /dev/sda2

Revision as of 20:09, 11 October 2012

Dica: Esta é parte de um artigo multi-páginas do "The Beginners' Guide" ("O Guia para Iniciantes"). Clique aqui se preferir ler o artigo completo.

Instalação

A partir deste momento, você está automaticamente logado em uma shell como usuário root.

Nota: O Framework de instalação do Arch Linux foi descotinuado, portanto, o procedimento de executar o script /arch/setup não funcionará.

Altera a linguagem

Tip: Este passo é opcional para a maioria dos usuários. Útil apenas se desejas o sistema em sua linguagem nativa, editar arquivos de configuração adicionando caracteres especiais, ou configurar senhas de Wi-Fi com tais caracteres ou receber mensagens do sistema na sua linguagem.

Por padrão, a linguagem do teclado é a us. Para utilizadores do Brasil:

# loadkeys br-abnt2

Para utilizadores de outras comunidades lusófonas:

# loadkeys pt-latin9

A fonte de letra do console também pode ser alterada, pois a maioria das linguagens utiliza o padrão de 26 letras do. Nestes casos, alguns caracteres podem aparecer na tela como quadrados brancos ou outros símbolos esquisitos. Note que o comando abaixo é case-sensitive, portanto, digite exatamente da forma como está escrito:

# setfont Lat2-Terminus16

Por padrão, a linguagem da instalação é o Inglês(US). Para alterar a linguagem durante o processo de instalação, basta remover o # na localização desejada no arquivo /etc/locale.gen, junto com a entrada em inglês. Priorize a escolha a entrada UTF-8. Utilize o editor de sua escolha, apesar deste manual utilizar o nano.

Pressione Template:Keypress para sair, e quando perguntado para salvar as alterações, pressione Template:Keypress seguido de Template:Keypress para sobrescrever o arquivo.

# nano /etc/locale.gen
en_US.UTF-8 UTF-8
pt_BR.UTF-8 UTF-8
# locale-gen
# export LANG=pt_BR.UTF-8 

ou

# nano /etc/locale.gen
en_US.UTF-8 UTF-8
pt_PT.UTF-8 UTF-8
# locale-gen
# export pt_PT.UTF-8 UTF-8

Lembre-se, Template:Keypress ativa e desativa um mapa de teclado.

Estabelecendo conexão com a internet

O serviço The dhcpcd inicia automaticamente em tempo de inicialização, e tentará iniciar uma conexão cabeada se disponível. Tente pingar um site para verificar a disponibilidade. Como o google tá sempre online...

# ping -c 3 www.google.com
PING www.l.google.com (74.125.132.105) 56(84) bytes of data.
64 bytes from wb-in-f105.1e100.net (74.125.132.105): icmp_req=1 ttl=50 time=17.0 ms
64 bytes from wb-in-f105.1e100.net (74.125.132.105): icmp_req=2 ttl=50 time=18.2 ms
64 bytes from wb-in-f105.1e100.net (74.125.132.105): icmp_req=3 ttl=50 time=16.6 ms

--- www.l.google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 16.660/17.320/18.254/0.678 ms

Caso você receba o erro ping: unknown host, você deverá configurar a rede manualmente, como descrito abaixo.

Caso contrário, vá para o tópico Preparando os Discos.

Rede Cabeada

Siga o seguinte procedimento para configurar sua conexão cabeada com um endereço IP estático.

Caso o seu computador esteja conectado a uma rede Ethernet, na maioria dos casos, você possuirá uma interface chamada eth0. Caso você tenha interfaces adicionais(como por exemplo, uma interface integrada a placa-mãe) elas seguirão a sequência eth1, eth2, etc.

Você precisa conhecer as seguintes informações:

  • Endereço IP estático.
  • Máscara de rede.
  • Endereço do Gateway
  • Endereço do DNS
  • Nome do domínio(a memos que esteja em uma LAN local, onde pode ignorar tal informação).


Para ativar uma interface de rede como a eth0:

# ip link set eth0 up

Adicione um endereço:

# ip addr add <ip address>/<subnetmask> dev <interface>

Exemplo:

# ip addr add 192.168.1.2/24 dev eth0

Para maiores opções, execute man ip.

Adicione o seu gateway da seguinte forma, substituindo o endereço IP pelo do seu gateway em questão:

# ip route add default via <ip address>

Exemplo:

# ip route add default via 192.168.1.1

Edite o arquivo resolv.conf, substituindo no parametro "nameserver" os endereços IP dos DNS's disponíveis, e o valor do seu domínio no parametro "search".

# nano /etc/resolv.conf
nameserver 61.23.173.5
nameserver 61.95.849.8
search example.com
Nota: Apenas três endereços nameserver podem ser incluídos neste arquivo.

A partir daqui, você deve ter acesso a rede cabeada. Caso contrário, dê uma verificada na página Configuring Network (Português).

Wireless

Siga este procedimento caso você precise de conectividade (Wi-Fi) durante o processo de instalação.

Os drivers e utilitários para conexão sem fio agora estão disponíveis na mídia de instalação. Um bom conhecimento do seu hardware sem fio será de suma importância para a obter sucesso na configuração. Note que seguindo o procedimento deste passo-a-passo habilitará seu hardware durante a utilização do sistema live ou executando em determinado processo da instalação. Estes passos precisam ser repetidos após um reboot no sistema.

Note também que estes passos são opcionais, pois se a conexão sem fio é desnecessária ao processo de instalação, estas configurações podem ser executadas em um período posterior.

Nota: Os exemplos a seguir usam a nomenclatura wlan0 para a interface de rede e linksys para a ESSID. Lembre de alterar estes valores de acordo com a sua configuração.

O procedimento básico será:

  • (opcional) Identificar a sua interface wireless:
# lspci | grep -i net

Ou, se utilizando uma placa externa(usb):

# lsusb
  • Certifique-se de que o udev carregou o driver apropriado, e que uma interface utilizável foi criada, através do comando iwconfig:
Note: Caso você não visualize uma saída de tela similar a esta, sua placa wireless não foi carregada. Neste caso, você deverá carregar o módulo do driver por sua conta. Veja Wireless Setup (Português) para informações mais detalhadas.
# iwconfig
lo no wireless extensions.
eth0 no wireless extensions.
wlan0    unassociated  ESSID:""
         Mode:Managed  Channel=0  Access Point: Not-Associated
         Bit Rate:0 kb/s   Tx-Power=20 dBm   Sensitivity=8/0
         Retry limit:7   RTS thr:off   Fragment thr:off
         Power Management:off
         Link Quality:0  Signal level:0  Noise level:0
         Rx invalid nwid:0  Rx invalid crypt:0  Rx invalid frag:0
         Tx excessive retries:0  Invalid misc:0   Missed beacon:0

Neste exemplo, wlan0 é a interface disponívei.

  • Para levantar a interface:
# ip link set wlan0 up

Uma pequena porcentagem dos dispositivos sem fio também necessitam de um firmware para o driver correspondente. Caso sua interface precide se um, o "erro comum" que pode acontecer ao levantar a interface é o seguinte:

# ip link set wlan0 up
SIOCSIFFLAGS: No such file or directory

Caso tenha dúvidas, utilize o dmesg para buscar por informações no log de kernel e encontrar qual o possível firmware a ser utilizado.

Exemplo de saída de um dispositivo da Intel, requisitando o firmware durante o boot:

# dmesg | grep firmware
firmware: requesting iwlwifi-5000-1.ucode

Caso não haja saída, pode ser concluído que nenhuma firmware é necessária para a sua placa.

Warning: Pacotes de firmware de dispositivos sem fio são pré-instalados dentro de /usr/lib/firmware no ambiente de instalação(liveCD ou liveUSB), porém, devem ser explicitamente instalados ao seu sistema para serem funcionais após o reiniciar da instalação!. A instalação de pacotes será aborada mais tarde neste guia. Certifique-se da instalação de ambos, o módulo e a firmware antes de reiniciar! Veja Wireless Setup (Português) caso esteja incerto dos requisitos de firmware correspondentes ao seu sistema em particular.

Após, utilize o pacote netcfg, e seu utilitário wifi-menu para conectar a rede:

# wifi-menu wlan0

A partir de agora, você já deve ter uma conexão de internet funcionando. Caso contrário, verifique a página Wireless Setup (Português).

ADSL/DSL(PPPoE), modem analógico ou ISDN

Caso você tenha um roteador configurado em modo bridge, rode:

 # pppoe-setup

Para usar a conexão configurada, rode:

# pppoe-start

Possivelmente você precisará fazer ajustes ao arquivo resolv.conf:

# echo nameserver 8.8.8.8 > /etc/resolv.conf

Se você tentando conectar-se através de um mode analógico(dial-up) ou uma conexão ISDN, veja Direct Modem Connection (Português).

Configurando servidor proxy

Caso seu computador esteja atrás de um servidor proxy, exporte as variáveis de ambiente http_proxy e ftp_proxy. Clique aqui para maiores informações.

Preparando os Discos

Warning: O Particionamento pode causar destruição de dados. Recomendamos fortemente que efetue um backup de qualquer informação importante antes de proceder com este passo.

Para completos iniciantes, encorajamos ferramentas gráficas de particionamento. O GParted é um bom exemplo de uma distribuição Linux live, assim como Parted Magic,,, etc. Um dispositivo deve ser primeiramente particionado e então as partições serão formatadas com um sistema de arquivos antes de reiniciar.

Caso já tenha executado este passo, prossiga para Montando as partições. Caso contrário, siga o exemplo:

Exemplo

A mídia de instalação do Arch Linux provê as seguinter ferramentas de particionamento:

  • gdisk – Suporta apenas tabelas de partição GPT.
  • cfdisk – Suporta apenas tabelas de partição MBR.

Este exemplo utiliza o cfdisk, mas ele pode ser facilmente adaptado para o gdisk, que permite o perticionamento em tabelas do tipo GPT.

Notas sobre o boot UEFI:
  • Se você possui uma placa-mãe com suporte a UEFI, você precisará criar uma partição UEFI extra.
  • É recomendado sempre usar GPT para boot UEFI, pois algumas firmwares UEFI não permitem inicialização EFI-MBR.
Notas sobre o particionamento GPT:
  • Se você não está configurando dual boot com o Windows, utilize GPT ao invés de MBR. Leia a lista de vantagens da GPT.
  • Se você possui uma placa mãe com BIOS(ou planeja iniciar em modo de compatibilidade BIOS) e deseja configurar o GRUP em um driver particionado via GPT, você precisará criar uma Partiçaõ de boot BIOS de 2 MiB. O Syslinux não precisa de uma.
Note: Caso esteja instalando o Arch de um driver USB, veja Instalando o Arch Linux de um driver USB.
# cfdisk /dev/sda

Este exemplo mostrará um sistema que terá 15 GB de partição raíz (/), 1GB de partição swap, e o espaço remanescente será destinado ao /home.

Vale enfatizar que particionamento de disco trata-se de gosto pessoal, e que este exemplo existe para propósitos ilustrativos. Veja Particionamento.

Raíz:

Swap:

Home:

O resultado do particionamento ficara parecido com este:

Name    Flags     Part Type    FS Type          [Label]       Size (MB)
-----------------------------------------------------------------------
sda1    Boot       Primary     Linux                             15360
sda2               Primary     Linux swap / Solaris              1024
sda3               Primary     Linux                             133000*

Verifique novamente, e se certifique que você está contente com os tamanhos das partições assim como o layout delas antes de continuar.

Se quiser reiniciar o processo, você pode simplesmente selecionar "Sair" (ou pressionar Template:Keypress) para sair do particionador sem salvar quaisquer alterações feitas no disco. Depois, basta executar o cfdisk novamente.

Se tiver satisfeito, selecione Gravar (ou pressione Template:Keypress) para finalizar a gravação da tabela de partições para o disco. Digite "Sim"(yes) e selecione Sair (ou pressionar Template:Keypress) para sair do cfdisk.

Particionar não é o bastante; As partições precisam de um sistema de arquivos. Para formatar as partições com um sistema de arquivos ext4:

Warning: Verifique e "re-Verifique" se é realmente a partição /dev/sda1 que você deseja formatar. Pode mudar de caso para caso.
# mkfs.ext4 /dev/sda1
# mkfs.ext4 /dev/sda3

E para formatar e ativar a partição de swap:

# mkswap /dev/sda2
# swapon /dev/sda2

Montando as Partições

Cada partição é identificada por um sufixo numeral. Por exemplo, sda1 especifica a primeira partição do primeiro driver, enquanto sda designa o disco por completo.

Para ver o layout de particionamento atual:

# lsblk /dev/sda

Preste atenção na ordem de montagem, pois ela é importante.

Primeiro, monte a partição raíz em /mnt. Seguindo o exemplo abaixo (em seu sistema, pode ser diferente) seria algo como:

# mount /dev/sda1 /mnt

Monte então a partição destinada ao /home e outras separadas para o /boot, /var, etc, caso desejar:

# mkdir /mnt/home
# mount /dev/sda3 /mnt/home

No caso da partição /boot ser separada:

# mkdir /mnt/boot
# mount /dev/sdaX /mnt/boot

Se a sua placa-mãe possuir suporte a UEFI, monte a partição da seguinte maneira:

# mkdir /mnt/boot/efi
# mount /dev/sdaX /mnt/boot/efi

Set Clock

Set the hardware clock. If this does not match the setting of your other operating systems, they will overwrite the time and cause clock shifts (which can cause time drift correction to be miscalibrated).

  • UTC (recommended)
  • localtime (highly discouraged) - Used by default in Windows, but Windows can be told to use UTC. If time is set to localtime, DST shifts will not be made by linux. Using localtime may lead to several known and unfixable bugs. However, there are no plans to drop support for localtime.
Note: Any other value will result in the hardware clock being left untouched (useful for virtualization).

Prepare Hard Drive

Warning: Partitioning hard drives can destroy data. You are strongly cautioned and advised to backup your critical data if applicable.
Note: Partitioning may be performed before initiating the Arch installation if desired, by utilizing GParted or other available tools. If the installation drive has already been partitioned to the required specifications, continue with Set Filesystem Mountpoints

Verify current disk identities and layout by invoking /sbin/fdisk with the -l (lower-case L) switch.

Open another virtual console (<ALT>+F3) and enter:

# fdisk -l

Take note of the disk(s)/partition(s) to utilize for the Arch installation.

Switch back to the installation script with <ALT>+F1

Select the first menu entry "Prepare Hard Drive".

  • Option 1: Auto-Prepare (Erases an ENTIRE hard drive and sets up partitions)

Auto-Prepare divides the disk into the following configuration:

  • ext2 /boot partition, default size 32MB. You will be prompted to modify the size to your requirement.
  • swap partition, default size 256MB. You will be prompted to modify the size to your requirement.
  • A Separate / and /home partition, (sizes can also be specified). Available filesystems include ext2, ext3, ext4, reiserfs, xfs and jfs, but note that both / and /home shall share the same fs type if choosing the Auto Prepare option.

Be warned that Auto-prepare will completely erase the chosen hard drive. Read the warning presented by the installer very carefully, and make sure the correct device is about to be partitioned.

  • Option 2: Manually Partition Hard Drives (with cfdisk)- recommended.

This option will allow for the most robust and customized partitioning solution for your personal needs.

  • Option 3: Manually Configure block devices, filesystems and mountpoints

If this is selected, the system will list what filesystems and mountpoints it has found and ask you if you wish to use these. If selecting "Yes", you will be given a choice to select the desired method of identification, ie. by dev, label or uuid.

  • Option 4: Rollback last filesystem changes

At this point, more advanced GNU/Linux users who are familiar and comfortable with manually partitioning may wish to skip down to Select Packages below.

Note: If you are installing to a USB flash key, see "Installing Arch Linux on a USB key".

Partition Hard Drives

Partition Type

Partitioning a hard disk drive defines specific areas (the partitions) within the disk, that will each appear and behave as a separate disk and upon which a filesystem may be created (formatted).

There are 3 types of disk partitions:

  • Primary
  • Extended
    • Logical

Primary partitions can be bootable, and are limited to 4 partitions per disk or raid volume. If a partitioning scheme requires more than 4 partitions, an extended partition which will contain logical partitions will be required.

Extended partitions are not usable by themselves; they are merely a "container" for logical partitions. If required, a hard disk shall contain only one extended partition; which shall then be sub-divided into logical partitions.

When partitioning a disk, one can observe this numbering scheme by creating primary partitions sda1 through sda3 followed by creating an extended partition, sda4, and subsequently creating logical partition(s) within the extended partition; sda5, sda6, and so on.

Swap Partition

A swap partition is a place on the drive where virtual RAM resides, allowing the kernel to easily use disk storage for data that does not fit into physical RAM.

Historically, the general rule for swap partition size was 2x the amount of physical RAM. Over time, as computers have gained ever larger memory capacities, this rule has become increasingly deprecated. Generally, on machines with up to 512MB RAM, the 2x rule is usually quite sufficient. If the installation machine provides gratuitous amounts of RAM (more than 1024 MB) it may be possible to completely forget a swap partition altogether, since the option to create a swap file is always available later. A 1 GB swap partition will be used in this example.

Note: If using suspend-to-disk, (hibernate) a swap partition at least equal in size to the amount of physical RAM is required. Some Arch users even recommend oversizing it beyond the amount of physical RAM by 10-15%, to allow for possible bad sectors.
Partition Scheme

A disk partitioning scheme is a very personalized preference. Each user's choices will be unique to their own computing habits and requirements. If you would like to dual boot Arch Linux and a Windows operating system please see Windows and Arch Dual Boot.

Filesystem candidates for separate partitions include:

/ (root) The root filesystem is the primary filesystem from which all other filesystems stem; the top of the hierarchy. All files and directories appear under the root directory "/", even if they are stored on different physical devices. The contents of the root filesystem must be adequate to boot, restore, recover, and/or repair the system. Therefore, certain directories under / are not themselves candidates for separate partitions. (See warning below).

/boot This directory contains the kernel and ramdisk images as well as the bootloader configuration file, and bootloader stages. /boot also stores data that is used before the kernel begins executing userspace programs. This may include saved master boot sectors and sector map files. /boot is essential for booting, but is unique in that it may still be kept on its own separate partition (if required).

/home Provides subdirectories, each named for a system user, for miscellaneous personal data storage as well as user-specific configuration files for applications.

/usr While root is the primary filesystem, /usr is the secondary hierarchy for all system users' data, including the majority of multi-user utilities and applications. /usr is shareable, read-only data. This means that /usr shall be shareable between various hosts and must not be written to, except in the case of system update/upgrade. Any information that is host-specific or varies with time is stored elsewhere.

Warning: A separate /usr partition will cause some silent failures in udev and will break systemd. source

/tmp directory for programs that require temporary files such as '.lck' files, which can be used to prevent multiple instances of their respective program until a task is completed, at which point the '.lck' file will be removed. Programs must not assume that any files or directories in /tmp are preserved between invocations of the program and files and directories located under /tmp will typically be deleted whenever the system is booted.

/var contains variable data; spool directories and files, administrative and logging data, pacman's cache, the ABS tree, etc. /var exists in order to make it possible to mount /usr as read-only. Everything that historically went into /usr that is written to during system operation (as opposed to installation and software maintenance) must reside under /var.

Warning: Besides /boot, directories essential for booting are: '/bin', '/etc', '/lib', and '/sbin'. Therefore, they must not reside on a separate partition from /.

There are several advantages for using discrete filesystems, rather than combining all into one partition:

  • Security: Each filesystem may be configured in /etc/fstab as 'nosuid', 'nodev', 'noexec', 'readonly', etc.
  • Stability: A user, or malfunctioning program can completely fill a filesystem with garbage if they have write permissions for it. Critical programs, which reside on a different filesystem remain unaffected.
  • Speed: A filesystem which gets written too frequently may become somewhat fragmented. (An effective method of avoiding fragmentation is to ensure that each filesystem is never in danger of filling up completely.) Separate filesystems remain unaffected, and each can be defragmented separately as well.
  • Integrity: If one filesystem becomes corrupted, separate filesystems remain unaffected.
  • Versatility: Sharing data across several systems becomes more expedient when independent filesystems are used. Separate filesystem types may also be chosen based upon the nature of data and usage.

In this example, we shall use separate partitions for /, /var, /home, and a swap partition.

Note: /var contains many small files. This should be taken into consideration when choosing a filesystem type for it, (if creating its own separate partition).
How big should my partitions be?

This question is best answered based upon individual needs. You may wish to simply create one partition for root and one partition for swap or only one root partition without swap or refer to the following examples and consider these guidelines to provide a frame of reference:

  • The root filesystem (/) in the example will contain the /usr directory, which can become moderately large, depending upon how much software is installed. 15-20 GB should be sufficient for most users.
  • The /var filesystem will contain, among other data, the ABS tree and the pacman cache. Keeping cached packages is useful and versatile; it provides the ability to downgrade packages if needed. /var tends to grow in size; the pacman cache can grow large over long periods of time, but can be safely cleared if needed. If you are using an SSD, you may wish to locate your /var on an HDD and keep the / and /home partitions on your SSD to avoid needless read/writes to the SSD. 8-12 Gigs on a desktop system should be sufficient for /var, depending largely upon how much software you intend to install. Servers tend to have relatively larger /var filesystems.
  • The /home filesystem is typically where user data, downloads, and multimedia reside. On a desktop system, /home is typically the largest filesystem on the drive by a large margin. Remember that if you chose to reinstall Arch, all the data on your /home partition will be untouched (so long as you have a separate /home partition).
  • An extra 25% of space added to each filesystem will provide a cushion for unforeseen occurrence, expansion, and serve as a preventive against fragmentation.

From the guidelines above, the example system shall contain a ~15GB root (/) partition, ~10GB /var, 1GB swap, and a /home containing the remaining disk space.

Create Partitions with cfdisk

Start by creating the primary partition that will contain the root, (/) filesystem.

Choose New -> Primary and enter the desired size for root (/). Put the partition at the beginning of the disk.

Also choose the Type by designating it as '83 Linux'. The created / partition shall appear as sda1 in our example.

Now create a primary partition for /var, designating it as Type 83 Linux. The created /var partition shall appear as sda2

Next, create a partition for swap. Select an appropriate size and specify the Type as 82 (Linux swap / Solaris). The created swap partition shall appear as sda3.

Lastly, create a partition for your /home directory. Choose another primary partition and set the desired size.

Likewise, select the Type as 83 Linux. The created /home partition shall appear as sda4.

Example:

Name    Flags     Part Type    FS Type           [Label]         Size (MB)
-------------------------------------------------------------------------
sda1               Primary     Linux                             15440 #root
sda2               Primary     Linux                             10256 #/var
sda3               Primary     Linux swap / Solaris              1024  #swap
sda4               Primary     Linux                             140480 #/home

Choose Write and type 'yes'. Beware that this operation may destroy data on your disk. Choose Quit to leave the partitioner. Choose Done to leave this menu and continue with "Set Filesystem Mountpoints".

Note: Since the latest developments of the Linux kernel which include the libata and PATA modules, all IDE, SATA and SCSI drives have adopted the sdx naming scheme. This is perfectly normal and should not be a concern.

Set Filesystem Mountpoints

Specify each partition and corresponding mountpoint to your requirements. (Recall that partitions end in a number. Therefore, sda is not itself a partition, but rather, signifies an entire drive)

Filesystem Types

Again, a filesystem type is a very subjective matter which comes down to personal preference. Each has its own advantages, disadvantages, and unique idiosyncrasies. Here is a very brief overview of supported filesystems:

1. ext2 Second Extended Filesystem- Old, mature GNU/Linux filesystem. Very stable, but without journaling support or barriers, which can result in data loss in a power loss or system crash. May be inconvenient for root (/) and /home, due to very long fsck's. An ext2 filesystem can easily be converted to ext3.

2. ext3 Third Extended Filesystem- Essentially the ext2 system, but with journaling support and write barriers. ext3 is backward compatible with ext2. Extremely stable and mature.

3. ext4 Fourth Extended Filesystem- Backward compatible with ext2 and ext3. Introduces support for volumes with sizes up to 1 exabyte and files with sizes up to 16 terabytes. Increases the 32,000 subdirectory limit in ext3 to 64,000. Offers online defragmentation ability.

4. ReiserFS (V3)- Hans Reiser's high-performance journaling FS uses a very interesting method of data throughput based on an unconventional and creative algorithm. ReiserFS is touted as very fast, especially when dealing with many small files. ReiserFS is fast at formatting, yet comparatively slow at mounting. Quite mature and stable. ReiserFS (V3) is not actively developed at this time. Generally regarded as a good choice for /var/.

5. JFS - IBM's Journaled FileSystem- The first filesystem to offer journaling. JFS had many years of use in the IBM AIX® OS before being ported to GNU/Linux. JFS currently uses the least CPU resources of any GNU/Linux filesystem. Very fast at formatting, mounting and fsck's, and very good all-around performance, especially in conjunction with the deadline I/O scheduler. (See JFS.) Not as widely supported as ext or ReiserFS, but very mature and stable.

6. XFS - Another early journaling filesystem originally developed by Silicon Graphics for the IRIX OS and ported to GNU/Linux. XFS offers very fast throughput on large files and large filesystems. Very fast at formatting and mounting. Generally benchmarked as slower with many small files, in comparison to other filesystems. XFS is very mature and offers online defragmentation ability.

7. Btrfs - Also known as "Better FS" is a new filesystem with substantial new and powerful features similar to Sun/Oracle's excellent ZFS. These include snapshots, multi-disk striping and mirroring (basically software raid without mdadm), checksums, incremental backup, and on-the-fly compression (which can give a significant performance boost as well as save space), and more. It is still considered "unstable" as of January 2011, but has been merged into the mainline kernel under experimental status. Btrfs looks to be the future of linux filesystems, and is now offered as a root filesystem choice in all major distribution installers.

Warning: Btrfs has no fsck utility yet, so if any corruption occurs you cannot repair the filesystem.
  • JFS and XFS filesystems cannot be shrunk by disk utilities (such as gparted or parted magic)
A note on Journaling

All above filesystems, except ext2, utilize journaling. Journaling file systems are fault-resilient file systems that use a journal to log changes before they are committed to the file system to avoid metadata corruption in the event of a crash. Note that not all journaling techniques are alike; specifically, only ext3 and ext4 offer data-mode journaling, (though, not by default), which journals both data and meta-data (but with a significant speed penalty). The others only offer ordered-mode journaling, which journals meta-data only. While all will return your filesystem to a valid state after recovering from a crash, data-mode journaling offers the greatest protection against file system corruption and data loss but can suffer from performance degradation, as all data is written twice (first to the journal, then to the disk). Depending upon how important your data is, this may be a consideration in choosing your filesystem type.

Moving on...

Choose and create the filesystem (format the partition) for / by selecting yes. You will now be prompted to add any additional partitions. In our example, sda2 and sda4 remain. For sda2, choose a filesystem type and mount it as /var. Finally, choose the filesystem type for sda4, and mount it as /home. Template:Box Note Return to the main menu.

Select Packages

All packages during installation are from the [core] repository. They are further divided into Base, and Base-devel. Package information and brief descriptions are available here.

First, select the package category:

Note: For expedience, all packages in base are selected by default. Use the space-bar to select and de-select packages.
Base 
Packages from the [core] repo to provide the minimal base environment. Always select this and only remove packages that will not be used.
Base-devel 
Extra tools from [core] such as make, and automake. Most beginners should choose to install it, as many will probably need it later.

After category selection, you will be presented with the full lists of packages, allowing you to fine-tune your selections. Use the space bar to select and unselect.

Note: If connection to a wireless network is required, remember to select and install the wireless_tools package. Some wireless interfaces also need ndiswrapper and/or a specific firmware. If you plan to use WPA encryption, you will need wpa_supplicant. The Wireless Setup page will help you choose the correct packages for your wireless device. Also strongly consider installing netcfg, which will help you set up your network connection and profiles after you reboot into your new system.

After selecting the needed packages, leave the selection screen and continue to the next step, Install Packages.

Install Packages

Install Packages will install the selected packages to your new system. If you selected a CD/USB as the source, package versions from the CD/USB will be installed. If you opted for a Netinstall, fresh packages will be downloaded from the internet and installed.

Note: In some installers, you will be asked if you wish to keep the packages in the pacman cache. If you choose 'yes', you will have the flexibility to downgrade to previous package versions in the future, so this is recommended (you can always clear the cache in the future).

After the packages have been downloaded, the installer will check their integrity. Next it will create the kernel from the packages downloaded.

Configure the System

Tip: Closely following and understanding these steps is of key importance to ensure a properly configured system.

At this stage of the installation, you will configure the primary configuration files of your Arch Linux base system. Previous versions of the installer included hwdetect to gather information for your configuration. This has been deprecated and replaced with udev, which should handle most module loading automatically at boot.

Now you will be asked which text editor you want to use; choose nano, joe or vi. nano is generally considered the easiest of the three. Please see the releated wiki pages of the editor you wish to use for instructions on how to use them. You will be presented with a menu including the main configuration files for your system.

Note: It is very important at this point to edit, or at least verify by opening, every configuration file. The installer script relies on your input to create these files on your installation. A common error is to skip over these critical steps of configuration.

Can the installer handle this more automatically?

Hiding the process of system configuration is in direct opposition to The Arch Way. While it is true that recent versions of the kernel and hardware probing tools offer excellent hardware support and auto-configuration, Arch presents the user all pertinent configuration files during installation for the purposes of transparency and system resource control. By the time you have finished modifying these files to your specifications, you will have learned the simple method of manual Arch Linux system configuration and become more familiar with the base structure, leaving you better prepared to use and maintain your new installation productively.

/etc/rc.conf

Arch Linux uses the file /etc/rc.conf as the principal location for system configuration. This one file contains a wide range of configuration information, principally used at system startup. As its name directly implies, it also contains settings for and invokes the /etc/rc* files, and is, of course, sourced by these files.


LOCALIZATION section
Example for LOCALIZATION:
LOCALE="en_US.utf8"
DAEMON_LOCALE="no"
HARDWARECLOCK="localtime"
TIMEZONE="US/Eastern"
KEYMAP="us"
CONSOLEFONT=
CONSOLEMAP=
USECOLOR="yes"
VERBOSE="3"
LOCALE 
This sets your system locale, which will be used by all i18n-aware applications and utilities. You can get a list of the available locales by running locale -a from the command line. This setting's default is usually fine for US English users. However if you experience any problems such as some characters not printing right and being replaced by squares you may want to go back and replace "en_US.utf8" with just "en_US".
DAEMON_LOCALE 
Specifies whether or not to use the daemon locale (with "yes" or "no"). Will use the environment variable $LOCALE as the value of the locale if specified as "yes", otherwise will use the C locale (if left at the default value of "no").
HARDWARECLOCK 
Specifies whether the hardware clock, which is synchronized on boot and on shutdown, stores UTC time, or localtime. UTC is recommended because it greatly simplifies changing timezones and daylight savings time [1].
TIMEZONE 
Specify your TIMEZONE. (All available zones are under /usr/share/zoneinfo/).
KEYMAP 
The available keymaps are in /usr/share/kbd/keymaps. Please note that this setting is only valid for your TTYs, not any graphical window managers or X.
CONSOLEFONT 
Available console fonts reside under /usr/share/kbd/consolefonts/ if you must change. The default (blank) is safe.
CONSOLEMAP 
Defines the console map to load with the setfont program at boot. Possible maps are found in /usr/share/kbd/consoletrans, if needed. The default (blank) is safe.
USECOLOR 
Select "yes" if you have a color monitor and wish to have colors in your consoles.
VERBOSE 
Level of verbosity, on a scale of 1 to 8.

HARDWARE Section
Example for HARDWARE:
# Scan hardware and load required modules at boot
MOD_AUTOLOAD="yes"
MODULES=(loop)
MOD_AUTOLOAD 
Setting this to "yes" will use udev to automatically probe hardware and load the appropriate modules during boot, (convenient with the default modular kernel). Setting this to "no" will rely on the user's ability to specify this information manually, or compile their own custom kernel and modules, etc.
MODULES 
Specify additional MODULES if you know that an important module is missing. If your system has any floppy drives, add "floppy". If you will be using loopback filesystems, add "loop".

NETWORKING Section
HOSTNAME 
Set your HOSTNAME to your liking. This is the name of your computer. Whatever you put here, also put it in /etc/hosts
eth0 
'Ethernet, card 0'. If you are using static IP, adjust the interface IP address, netmask and broadcast address. Set eth0="dhcp" if you want to use DHCP for dynamic/automatic configuration.
INTERFACES 
Specify all interfaces here. Multiple interfaces should be separated with a space as in: (eth0 wlan0)
gateway 
If you are using static IP, set the gateway address. If using DHCP, you can usually ignore this variable, though some users have reported the need to define it.
ROUTES 
If you are using static IP, remove the ! in front of 'gateway'. If using DHCP, you can usually leave this variable commented out with the bang (!), but again, some users require the gateway and ROUTES defined. If you experience networking issues with pacman, for instance, you may want to return to these variables.

Example w/ Dynamic IP (DHCP):

HOSTNAME="arch"
#eth0="eth0 192.168.0.2 netmask 255.255.255.0 broadcast 192.168.0.255"
eth0="dhcp"
INTERFACES=(eth0)
gateway="default gw 192.168.0.1"
ROUTES=(!gateway)

Example w/ Static IP:

HOSTNAME="arch"
eth0="eth0 192.168.0.2 netmask 255.255.255.0 broadcast 192.168.0.255"
INTERFACES=(eth0)
gateway="default gw 192.168.0.1"
ROUTES=(gateway)

When using a static IP, modify /etc/resolv.conf to specify the DNS servers of choice. Please see the section below regarding this file.

Note: Remember, connecting to a wireless network automatically requires a few more steps and may require you to set up a network manager such as netcfg or wicd. Please see the Wireless Setup page for more information
Tip: If using a non-standard MTU size (a.k.a. jumbo frames) is desired AND the installation machine hardware supports them, see the Jumbo Frames wiki article for further configuration.

DAEMONS Section

This array simply lists the names of those scripts contained in /etc/rc.d/ which are to be started during the boot process, and the order in which they start. Asynchronous initialization by backgrounding is also supported and useful for speeding up boot.

DAEMONS=(network @syslog-ng netfs @crond)
  • If a script name is prefixed with a bang (!), it is not executed.
  • If a script is prefixed with an "at" symbol (@), it shall be executed in the background; the startup sequence will not wait for successful completion of each daemon before continuing to the next. (Useful for speeding up system boot). Do not background daemons that are needed by other daemons. For example "mpd" depends on "network", therefore backgrounding network may cause mpd to break.
  • Edit this array whenever new system services are installed, if starting them automatically during boot is desired.
Note: This 'BSD-style' init, is the Arch way of handling what other distributions handle with various symlinks to an /etc/init.d directory.

About DAEMONS

The daemons line need not be changed at this time, but it is useful to explain what daemons are, as they will be addressed later in this guide.

A daemon is a program that runs in the background, waiting for events to occur and offering services. A good example is a web server that waits for a request to deliver a page (e.g.:httpd) or an SSH server waiting for a user login (e.g.:sshd). While these are full-featured applications, there are also daemons whose work is not that visible. Examples are a daemon which writes messages into a log file (e.g. syslog, metalog), and a daemon which provides a graphical login (e.g.: gdm, kdm). All these programs can be added to the daemons line and will be started when the system boots. Useful daemons will be presented during this guide.

Historically, the term daemon was coined by the programmers of MIT's Project MAC. They took the name from Maxwell's demon, an imaginary being from a famous thought experiment that constantly works in the background, sorting molecules. *nix systems inherited this terminology and created the backronym disk and execution monitor.

Tip: All Arch daemons reside under /etc/rc.d/

/etc/fstab

The fstab (for file systems table) is part of the system configuration listing all available disks and disk partitions, and indicating how they are to be initialized or otherwise integrated into the overall system's filesystem. The /etc/fstab file is most commonly used by the mount command. The mount command takes a filesystem on a device, and adds it to the main system hierarchy that you see when you use your system. mount -a is called from /etc/rc.sysinit, about 3/4 of the way through the boot process, and reads /etc/fstab to determine which options should be used when mounting the specified devices therein. If noauto is appended to a filesystem in /etc/fstab, mount -a will not mount it at boot.

An example of /etc/fstab

# <file system>                            <dir>     <type>  <options>     <dump> <pass>
devpts                                     /dev/pts  devpts  defaults      0      0
shm                                        /dev/shm  tmpfs   nodev,nosuid  0      0
UUID=0ddfbb25-9b00-4143-b458-bc0c45de47a0  /         ext4    defaults      0      1
UUID=da6e64c6-f524-4978-971e-a3f5bd3c2c7b  /var      ext4    defaults      0      2
UUID=440b5c2d-9926-49ae-80fd-8d4b129f330b  swap      swap    defaults      0      0
UUID=95783956-c4c6-4fe7-9de6-1883a92c2cc8  /home     ext4    defaults      0      2
Note: See Fstab for more information and performance tweaks such as 'noatime'/'relatime'.
<file system> 
describes the block device or remote filesystem to be mounted. For regular mounts, this field will contain a link to a block device node (as created by mknod which is called by udev at boot) for the device to be mounted; for instance, '/dev/cdrom' or '/dev/sda1'.
Note: If your system has more than one hard drive, the installer will default to using UUID rather than the sdx naming scheme, for consistent device mapping. Utilizing UUID has several advantages and may also be preferred to avoid issues if hard disks are added to the system in the future. Due to active developments in the kernel and also udev, the ordering in which drivers for storage controllers are loaded may change randomly, yielding an unbootable system/kernel panic. Nearly every motherboard has several controllers (onboard SATA, onboard IDE), and due to the aforementioned development updates, /dev/sda may become /dev/sdb on the next reboot. (See this wiki article for more information on persistent block device naming. )
<dir> 
describes the mount point for the filesystem. For swap partitions, this field should be specified as 'swap'; (Swap partitions are not actually mounted.)
<type> 
describes the type of the filesystem. The Linux kernel supports many filesystem types. (For the filesystems currently supported by the running kernel, see /proc/filesystems). An entry 'swap' denotes a file or partition to be used for swapping. An entry 'ignore' causes the line to be ignored. This is useful to show disk partitions which are currently unused.
<options> 
describes the mount options associated with the filesystem. It is formatted as a comma-separated list of options with no intervening spaces. It contains at least the type of mount plus any additional options appropriate to the filesystem type. For documentation on the available options for non-nfs file systems, see mount(8).
<dump> 
used by the dump(8) command to determine which filesystems are to be dumped. dump is a backup utility. If the fifth field is not present, a value of zero is returned and dump will assume that the filesystem does not need to be backed up. Note that dump is not installed by default.
<pass> 
used by the fsck(8) program to determine the order in which filesystem checks are done at boot time. The root filesystem should be specified with a <pass> of 1, and other filesystems should have a <pass> of 2 or 0. Filesystems within a drive will be checked sequentially, but filesystems on different drives will be checked at the same time to utilize parallelism available in the hardware. If the sixth field is not present or zero, a value of zero is returned and fsck will assume that the filesystem does not need to be checked.

Expanded information available in the Fstab wiki entry.

/etc/mkinitcpio.conf

Most users will not need to modify this file at this time, but please read the following explanatory information.

This file allows further fine-tuning of the initial ram filesystem, or initramfs, (also historically referred to as the initial ramdisk or "initrd") for your system. The initramfs is a gzipped image that is read by the kernel during boot. The purpose of the initramfs is to bootstrap the system to the point where it can access the root filesystem. This means it has to load any modules that are required for devices like IDE, SCSI, or SATA drives (or USB/FW, if you are booting from a USB/FW drive). Once the initrramfs loads the proper modules, either manually or through udev, it passes control to the kernel and your boot continues. For this reason, the initramfs only needs to contain the modules necessary to access the root filesystem. It does not need to contain every module you would ever want to use. The majority of common kernel modules will be loaded later on by udev, during the init process.

mkinitcpio is the next generation of initramfs creation. It has many advantages over the old mkinitrd and mkinitramfs scripts.

  • It uses glibc and busybox to provide a small and lightweight base for early userspace.
  • It can use udev for hardware autodetection at runtime, thus preventing numerous unnecessary modules from being loaded.
  • Its hook-based init script is easily extendable with custom hooks, which can easily be included in pacman packages without having to modifiy mkinitcpio itself.
  • It already supports lvm2, dm-crypt for both legacy and luks volumes, raid, swsusp and suspend2 resuming and booting from usb mass storage devices.
  • Many features can be configured from the kernel command line without having to rebuild the image.
  • The mkinitcpio script makes it possible to include the image in a kernel, thus making a self-contained kernel image is possible.
  • Its flexibility makes recompiling a kernel unnecessary in many cases.

If using RAID or LVM on the root filesystem, the appropriate HOOKS must be configured. See the wiki pages for RAID and /etc/mkinitcpio for more info. If using a non-US keyboard. add the "keymap" hook to load your local keymap during boot. Add the "usbinput" hook if using a USB keyboard. Remember to add the "usb" hook when installing arch on an external hard drive, Comfact Flash, or SD card, which is connected via usb, e.g.:

HOOKS="base udev autodetect pata scsi sata usb filesystems keymap usbinput"

(Otherwise, if boot fails for some reason you will be asked to enter root's password for system maintenance but will be unable to do so.)

If you need support for booting from USB devices, FireWire devices, PCMCIA devices, NFS shares, software RAID arrays, LVM2 volumes, encrypted volumes, or DSDT support, configure your HOOKS accordingly.

/etc/modprobe.d/modprobe.conf

This file can be used to set special configuration options for the kernel modules. It is unnecessary to configure this file in the example.

/etc/resolv.conf

Note: If you are using DHCP, you may safely ignore this file, as by default, it will be dynamically created and destroyed by the dhcpcd daemon. You may change this default behavior if you wish. See the Network and Resolv.conf pages for more information.

The resolver is a set of routines in the C library that provide access to the Internet Domain Name System (DNS). One of the main functions of DNS is to translate domain names into IP addresses, to make the Web a friendlier place. The resolver configuration file, or /etc/resolv.conf, contains information that is read by the resolver routines the first time they are invoked by a process.

If you use a static IP, set your DNS servers in /etc/resolv.conf (nameserver <ip-address>). You may have as many as you wish. An example, using OpenDNS:

nameserver 208.67.222.222
nameserver 208.67.220.220

If you are using a router, you will probably want to specify your DNS servers in the router itself, and merely point to it from your /etc/resolv.conf, using your router's IP (which is also your gateway from /etc/rc.conf). Example:

nameserver 192.168.1.1

If using DHCP, you may also specify your DNS servers in the router, or allow automatic assignment from your ISP, if your ISP is so equipped.

/etc/hosts

This file associates IP addresses with hostnames and aliases, one line per IP address. For each host a single line should be present with the following information:

<IP-address> <hostname> [aliases...]

Add your hostname, coinciding with the one specified in /etc/rc.conf, as an alias, so that it looks like this:

127.0.0.1   localhost.localdomain   localhost yourhostname
Warning: This format, including the 'localhost' and your actual host name, is required for program compatibility! So, if you have named your computer "arch", then that line above should look like this:
127.0.0.1   localhost.localdomain   localhost arch
Errors in this entry may cause poor network performance and/or certain programs to open very slowly, or not work at all. This is a very common error for beginners.
Note: Recent versions of the Arch Linux Installer automatically add your hostname to this file once you edit /etc/rc.conf with such information. If, for whatever reason, this is not the case, you may add it yourself with the given instructions.

If you use a static IP, add another line using the syntax: <static-IP> <hostname.domainname.org> <hostname> e.g.:

192.168.1.100 yourhostname.domain.org  yourhostname
Tip: For convenience, you may also use /etc/hosts aliases for hosts on your network, and/or on the Web, e.g.:
64.233.169.103   www.google.com   g
192.168.1.90   media
192.168.1.88   data
The above example would allow you to access google simply by typing 'g' into your browser, and access to a media and data server on your network by name and without the need for typing out their respective IP addresses.

/etc/hosts.deny and /etc/hosts.allow

Tango-view-refresh-red.pngThis article or section is out of date.Tango-view-refresh-red.png

Reason: please use the first argument of the template to provide a brief explanation. (Discuss in Talk:Beginners' Guide/Installation (Português)#)

Modify these configurations according to your needs if you plan on using the ssh daemon. The default configuration will reject all incoming connections, not only ssh connections. Edit your /etc/hosts.allow file and add the appropriate parameters:

  • Let everyone connect to you
sshd: ALL
  • Restrict it to a certain ip
sshd: 192.168.0.1
  • Restrict it to your local LAN network (range 192.168.0.0 to 192.168.0.255)
sshd: 192.168.0.
  • Restrict for an IP range
sshd: 10.0.0.0/255.255.255.0

If you do not plan on using the ssh daemon, leave this file at the default, (empty).

/etc/locale.gen

The /usr/sbin/locale-gen command reads from /etc/locale.gen to generate specific locales. They can then be used by glibc and any other locale-aware program or library for rendering text, correctly displaying regional monetary values, time and date formats, alphabetic idiosyncrasies, and other locale-specific standards.

By default /etc/locale.gen is an empty file with commented documentation. Once edited, the file remains untouched. locale-gen runs on every glibc upgrade, generating all the locales specified in /etc/locale.gen.

Choose the locale(s) you need (remove the # in front of the lines you want), e.g.:

en_US ISO-8859-1
en_US.UTF-8

The installer will now run the locale-gen script, which will generate the locales you specified. You may change your locale in the future by editing /etc/locale.gen and subsequently running 'locale-gen' as root.

Note: If you fail to choose your locale, this will lead to a "The current locale is invalid..." error. This is perhaps the most common mistake by new Arch users.

Pacman-Mirror

Choose a mirror repository for pacman. Remember that archlinux.org is throttled, limiting downloads to 50KB/s. Check Mirrors for more details about selecting a pacman mirror.

Root password

Finally, set a root password and make sure that you remember it later. Return to the main menu and continue with installing bootloader.

Done

When you select "Done", the system will rebuild the images and put you back to the Main Menu. This may take some time.

Install Bootloader

Because we have no secondary operating system in our example, we will need a bootloader. GRUB is the recommended bootloader and will be used in the following examples. Alternatively, you may choose LILO or Syslinux. Please see the related wiki and documentation pages if you choose to use a bootloader other than GRUB.

The provided GRUB configuration (/boot/grub/menu.lst) should be sufficient, but verify its contents to ensure accuracy (specifically, ensure that the root (/) partition is specified by UUID on line 3). You may want to alter the resolution of the console by adding a vga=<number> kernel argument corresponding to your desired virtual console resolution. (A table of resolutions and the corresponding numbers is printed in the menu.lst.)

Explanation:

title 
A printed menu selection. "Arch Linux (Main)" will be printed on the screen as a menu selection.
root 
GRUB's root; the drive and partition where the kernel (/boot) resides, according to system BIOS. (More accurately, where GRUB's stage2 file resides). NOT necessarily the root (/) file system, as they can reside on separate partitions. GRUB's numbering scheme starts at 0, and uses an hdx,x format regardless of IDE or SATA, and enclosed within parentheses. The example indicates that /boot is on the first partition of the first drive, according to the BIOS, so (hd0,0).
kernel 
This line specifies:
  • The path and filename of the kernel relative to GRUB's root. In the example, /boot is merely a directory residing on the same partition as / and vmlinuz26 is the kernel filename; /boot/vmlinuz26. If /boot were on a separate partition, the path and filename would be simply /vmlinuz26, being relative to GRUB's root.
  • The root= argument to the kernel statement specifies the partition containing the root (/) directory in the booted system, (more accurately, the partition containing /sbin/init). An easy way to distinguish the 2 appearances of 'root' in /boot/grub/menu.lst is to remember that the first root statement informs GRUB where the kernel resides, whereas the second root= kernel argument tells the kernel where the root filesystem (/) resides.
  • Kernel options. In our example, ro mounts the filesystem as read-only during startup, (usually a safe default; you may wish to change this in case it causes problems booting). Depending on hardware, rootdelay=8 may need to be added to the kernel options in order to be able to boot from an external usb hard drive.
initrd 
The path and filename of the initial RAM filesystem relative to GRUB's root. Again, in the example, /boot is merely a directory residing on the same partition as / and kernel26.img is the initrd filename; /boot/kernel26.img. If /boot were on a separate partition, the path and filename would be simply /kernel26.img, being relative to GRUB's root.

Example

title  Arch Linux (Main)
root   (hd0,0)
kernel /boot/vmlinuz26 root=/dev/sda1 ro
initrd /boot/kernel26.img

Example for /boot on a separate partition

title  Arch Linux (Main)
root   (hd0,0)
kernel /vmlinuz26 root=/dev/sda3 ro
initrd /kernel26.img

Install the GRUB bootloader to the master boot record (/dev/sda in our example).

Warning: Make sure to install GRUB on /dev/sdX and not /dev/sdX#! This is a common mistake.
Tip: For more details, see the GRUB wiki page.

Reboot

That's it; You have configured and installed your Arch Linux base system. Exit the install, and reboot:

# reboot
Tip: Be sure to remove the installation media and perhaps change the boot preference in your BIOS; otherwise you may boot back into the installation!

Template:Beginners' Guide navigation (Português)