Fstab (Italiano)

From ArchWiki
Revision as of 16:32, 1 June 2010 by 4javier (Talk | contribs) (Created page with 'Category:File systems (English) Category:HOWTOs (English) {{i18n_links_start}} {{i18n_entry|English|Fstab}} {{i18n_entry|Español|Fstab (Español)}} {{i18n_entry|Русс…')

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Template:I18n links start Template:I18n entry Template:I18n entry Template:I18n entry Template:I18n entry Template:I18n entry Template:I18n links end

Tango-preferences-desktop-locale.pngThis article or section needs to be translated.Tango-preferences-desktop-locale.png

Notes: please use the first argument of the template to provide more detailed indications. (Discuss in Talk:Fstab (Italiano)#)
Note: Questo articolo è in fase di traduzione. Seguite per ora le istruzioni della versione inglese.

The Template:Filename file contains static filesystem information. It defines how storage devices and partitions are to be initialized and integrated into the overall system.

Field definitions

Template:Filename contains the following fields separated by a space or tab:

<file system>	<dir>	<type>	<options>	<dump>	<pass>
  • <file systems> - defines the storage device (i.e. Template:Filename).
  • <dir> - tells the mount command where it should mount the <file system> to.
  • <type> - defines the file system type of the device or partition to be mounted. Many different file systems are supported. Some examples are: ext2, ext3, reiserfs, xfs, jfs, smbfs, iso9660, vfat, ntfs, swap, and auto. The 'auto' type lets the mount command to attempt to guess what type of file system is used, this is useful for removable devices such as cdroms and dvds.
  • <options> - define particular options for filesystems. Some options relate only to the filesystem itself. Some of the more common options are:
  • auto - File system will mount automatically at boot, or when the command 'mount -a' is issued.
  • noauto - The filesystem is mounted only when you tell it to.
  • exec - Allow the execution binaries that are on that partition (default).
  • noexec - Do not allow binaries to be executed on the filesystem.
  • ro - Mount the filesystem read only
  • rw - Mount the filesystem read-write
  • sync - I/O should be done synchronously
  • async - I/O should be done asynchronously
  • flush - specific option for FAT to flush data more often, thus making copy dialogs or progress bars to stays up until things are on the disk
  • user - Permit any user to mount the filesystem (implies noexec,nosuid,nodev unless overridden.)
  • nouser - Only allow root to mount the filesystem. (default)
  • defaults - Default mount settings (equivalent to rw,suid,dev,exec,auto,nouser,async).
  • suid - Allow the operation of suid, and sgid bits. They are mostly used to allow users on a computer system to execute binary executables with temporarily elevated privileges in order to perform a specific task.
  • nosuid - Block the operation of suid, and sgid bits.
  • noatime - Do not update inode access times on the filesystem. Can help performance (see atime options).
  • nodiratime - Do not update directory inode access times on the filesystem. Can help performance (see atime options).
  • relatime - Update inode access times relative to modify or change time. Access time is only updated if the previous access time was earlier than the current modify or change time. (Similar to noatime, but doesn't break mutt or other applications that need to know if a file has been read since the last time it was modified.) Can help performance (see atime options).
  • <dump> - Is used by the dump utility to decide when to make a backup. When installed (not installed by a standard installation of Arch Linux), dump checks the entry and uses the number to decide if a file system should be backed up. Possible entries are 0 and 1. If 0, dump will ignore the file system, if 1, dump will make a backup. Most users will not have dump installed, so they should put 0 for the <dump> entry.
  • <pass> fsck reads the <pass> number and determines in which order the file systems should be checked. Possible entries are 0, 1, and 2. The root file system should have the highest priority, 1, all other file systems you want to have checked should get a 2. File systems with a <pass> value 0 will not be checked by the fsck utility.


Here is an example Template:Filename using kernel naming (/dev/sdx) descriptors:

# <file system>        <dir>         <type>    <options>             <dump> <pass>
none                   /dev/pts      devpts    defaults                0      0
none                   /dev/shm      tmpfs     defaults                0      0

/dev/cdrom             /media/cd     iso9660   ro,user,noauto,unhide   0      0
/dev/dvd               /media/dvd    udf       ro,user,noauto,unhide   0      0
/dev/fd0               /media/fl     auto      user,noauto             0      0

/dev/sda2              /             ext4      defaults,noatime        0      1
/dev/sda6              /home         ext4      defaults,noatime        0      2
/dev/sda7              swap          swap      defaults                0      0

Defining filesystems

You can define the filesystems in the Template:Filename configuration in three different ways: by kernel naming descriptors, by UUID, or by labels. The advantage of using UUIDs or labels is that they are not dependent on disk order. This is useful if you change your storage device order in the BIOS, you switch storage device cabling, or because some BIOS's may occasionally change the order of storage devices.

Kernel naming

You can get kernel naming descriptors using Template:Codeline:

# fdisk -l
Device Boot      Start         End      Blocks   Id  System
/dev/sda1   *           1        2550    20482843+   b  W95 FAT32
/dev/sda2            2551        5100    20482875   83  Linux
/dev/sda3            5101        7650    20482875   83  Linux
/dev/sda4            7651      121601   915311407+   5  Extended
/dev/sda5            7651       10200    20482843+  83  Linux
/dev/sda6           10201       17849    61440561   83  Linux
/dev/sda7           17850       18104     2048256   82  Linux swap / Solaris
/dev/sda8           18105       18113       72261   83  Linux
/dev/sda9           18114      121601   831267328+   7  HPFS/NTFS


UUIDs are generated by the make-filesystem utilities (Template:Codeline) when you create a filesystem. Template:Codeline will show you the UUIDs of mounted devices and partitions:

# blkid
/dev/sda1: UUID="76E4F702E4F6C401" LABEL="vista" TYPE="ntfs"
/dev/sda2: LABEL="Root" UUID="24f28fc6-717e-4bcd-a5f7-32b959024e26" TYPE="ext4"
/dev/sda6: LABEL="Home" UUID="03ec5dd3-45c0-4f95-a363-61ff321a09ff" TYPE="ext4" 
/dev/sda7: LABEL="swap" UUID="4209c845-f495-4c43-8a03-5363dd433153" TYPE="swap"
/dev/sda10: UUID="0ea7a93f-537c-4868-9201-0dc090c050e4" TYPE="crypto_LUKS"
/dev/mapper/sda10: UUID="d3560bbb-b5d5-46c5-a7a8-434c885217c7" UUID_SUB="425ab275-d520-4636-8d16-55fb2b957971" TYPE="btrfs"

An example Template:Filename using the UUID identifiers:

# <file system>        <dir>         <type>    <options>             <dump> <pass>
none                   /dev/pts      devpts    defaults                0      0
none                   /dev/shm      tmpfs     defaults                0      0

/dev/cdrom             /media/cd     iso9660   ro,user,noauto,unhide   0      0
/dev/dvd               /media/dvd    udf       ro,user,noauto,unhide   0      0
/dev/fd0               /media/fl     auto      user,noauto             0      0
UUID=24f28fc6-717e-4bcd-a5f7-32b959024e26 /     ext4 defaults,noatime  0      1
UUID=03ec5dd3-45c0-4f95-a363-61ff321a09ff /home ext4 defaults,noatime  0      2
UUID=4209c845-f495-4c43-8a03-5363dd433153 swap  swap defaults          0      0


The device or partition is required to be labeled first. To do this, you can use common applications like Template:Package Official to label partitions or you can use Template:Codeline to label ext2, ext3, and ext4 partitions. Keep in mind that not all file system have labeling support (e.g. FAT file systems).

A device or partition must not be mounted before attempting to label them. Initially you will need to boot from a Live{CD|USB} before you can label with a Template:Package Official-like application or for ext partitions you can use Template:Codeline.

e2label /dev/<disk-or-partition> Arch_Linux

Labels can be up to 16 characters long. Technically labeling can have spaces too, however there is no way to have your Template:Filename or GRUB configuration file (for that matter) be able to recognize them by that label if you do.

Labels should be unambiguous, meaning that each label should be original to prevent any possible conflicts. To enter labels into your Template:Filename, here is an example:

# <file system>        <dir>         <type>    <options>             <dump> <pass>
none                   /dev/pts      devpts    defaults                0      0
none                   /dev/shm      tmpfs     defaults                0      0
/dev/cdrom             /media/cd     iso9660   ro,user,noauto,unhide   0      0
/dev/dvd               /media/dvd    udf       ro,user,noauto,unhide   0      0
/dev/fd0               /media/fl     auto      user,noauto             0      0
LABEL=Arch_Linux       /             ext4      defaults,noatime        0      1
LABEL=Arch_Swap        swap          swap      defaults                0      0


Some tips.

atime options

The use of Template:Codeline, Template:Codeline or Template:Codeline can help disk performance for ext2, ext3, and ext4 filesystems. Linux by default keeps a record (writes to the disk) every times it reads from the disk. This was more purposeful when Linux was being used for servers and doesn't have much use for desktop use. This works good for almost all applications but Mutt that needs this information. For mutt, you should only use the Template:Codeline option.