Kernels (简体中文)

From ArchWiki
Revision as of 04:59, 2 March 2012 by Skydiver (Talk | contribs) (Article created, need further translation)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This template has only maintenance purposes. For linking to local translations please use interlanguage links, see Help:i18n#Interlanguage links.

Local languages: Català – Dansk – English – Español – Esperanto – Hrvatski – Indonesia – Italiano – Lietuviškai – Magyar – Nederlands – Norsk Bokmål – Polski – Português – Slovenský – Česky – Ελληνικά – Български – Русский – Српски – Українська – עברית – العربية – ไทย – 日本語 – 正體中文 – 简体中文 – 한국어

External languages (all articles in these languages should be moved to the external wiki): Deutsch – Français – Română – Suomi – Svenska – Tiếng Việt – Türkçe – فارسی

Tango-preferences-desktop-locale.pngThis article or section needs to be translated.Tango-preferences-desktop-locale.png

Notes: please use the first argument of the template to provide more detailed indications. (Discuss in Talk:Kernels (简体中文)#)
Template:Article summary start

Template:Article summary text Template:Article summary heading Template:Article summary wiki Template:Article summary wiki Template:Article summary wiki Template:Article summary wiki Template:Article summary end

来自 Wikipedia:


There are various alternative kernels available for Arch Linux in addition to the mainline Linux kernel. This article lists some of the options available in the repositories with a brief description of each. There is also a description of patches that can be applied to the system's kernel. The article ends with an overview of custom kernel compilation with links to various methods.

Precompiled kernels

Official packages

The Linux kernel and modules from the [core] repository. Vanilla kernel with three patches applied (as of 3.1.3-1).
Long term support (LTS) Linux kernel and modules from the [core] repository.

AUR packages

Linux kernel and modules with the Brain Fuck Scheduler (BFS) - created by Con Kolivas for desktop computers with fewer than 4096 cores, with BFQ I/O scheduler as optional.
Linux Kernel built with Con Kolivas' ck1 patchset.
Additional options which can be toggled on/off in the PKGBUILD include: BFQ scheduler, nconfig, localmodconfig and use running kernel's config.
These are patches designed to improve system responsiveness with specific emphasis on the desktop, but suitable to any workload. The ck patches include BFS.
For further information and installation instructions, please read the linux-ck main article.
The Linux Kernel and modules with fbcondecor support.
The Linux Kernel and modules with grsecurity and PaX patches for increased security.
The Linux Kernel and modules with gentoo-sources patchset and TuxOnIce support.
Liquorix is a distro kernel replacement built using the best configuration and kernel sources for desktop, multimedia, and gaming workloads, often used as a Debian Linux performance replacement kernel. damentz, the maintainer of the Liquorix patchset, is a developer for the Zen patchset as well, so many of the improvements there are found in this patchset.
The Linux Kernel and modules with PaX patches for increased security.
Linux kernel and modules with the pf-kernel patchset [-ck patchset (BFS included), TuxOnIce, BFQ], aufs2 and squashfs-lzma.
The Linux vanilla kernel and modules without Arch Linux patches.
Linux kernel and kernel headers - patched for the aircrack-ng suite to work properly.
The Zen Kernel is a the result of a collaborative effort of kernel hackers to provide the best Linux kernel possible for every day systems.
Static kernel for netbooks with Intel Atom N270/N280/N450/N550 such as the Eee PC with the add-on of external firmware (broadcom-wlAUR) and patchset (BFS + TuxOnIce + BFQ optional) - Only Intel GPU

Patches and Patchsets

There are lots of reasons to patch your kernel, the major ones are for performance or support for non-mainline features such as reiser4 file system support. Other reasons might include fun and to see how it is done and what the improvements are.

However, it is important to note that the best way to increase the speed of your system is to first tailor your kernel to your system, especially the architecture and processor type. For this reason using pre-packaged versions of custom kernels with generic architecture settings is not recommended or really worth it. A further benefit is that you can reduce the size of your kernel (and therefore build time) by not including support for things you do not have or use. For example, I always start with the stock kernel config when a new kernel version is released and I remove support for things like bluetooth, video4linux, 1000Mbit ethernet, etc. Stuff I know I won't use before I build my next kernel! However, this page is not about customizing your kernel config but I would recommend that as a first step to be combined with a patchset later.

How to install

The installation process of custom kernel packages relies on the Arch Build System (AUR). If you haven't built any custom packages yet you may consult the following articles: Arch Build System and Creating Packages.

If you haven't actually patched or customized a kernel before it is not that hard and there are many PKGBUILDS on the forum for individual patchsets. However, I would advise you to start from scratch with a bit of research on the benefits of each patchset rather than jumping on the nearest bandwagon! This way you'll learn much more about what you are doing rather than just choosing a kernel at startup and wondering what it actually does.

See #Kernel Compilation.

Major patchsets

First of all it is important to note that patchsets are developed by a variety of people. Some of these people are actually involved in the production of the linux kernel and others are hobbyists, which may reflect its level of reliability and stability.

It is also worth noting that some patchsets are built on the back of other patchsets (which may or may not be reflected in the title of the patch). Patchsets (and kernel updates) can be released very frequently and often it is not worth keeping up with ALL of them so do not go crazy, unless you make it your hobby!

You can search google for more sets - remember to use quotes "-nitro" for example otherwise google will deliberately NOT show the results you want!

Note: This section is for information only - clearly no guarantees of stability or reliability are implied by inclusion on this page.


These are patches designed to improve system responsiveness with specific emphasis on the desktop, but suitable to any workload. The patches are created and maintained by Con Kolivas, his site is at Con maintains a full set but also provides the patches broken down so you can add only those you prefer.

The -ck patches can be found at


This patchset is maintained by a small group of core developers, led by Ingo Molnar. This patch allows nearly all of the kernel to be preempted, with the exception of a few very small regions of code ("raw_spinlock critical regions"). This is done by replacing most kernel spinlocks with mutexes that support priority inheritance, as well as moving all interrupt and software interrupts to kernel threads.

It further incorporates high resolution timers - a patch set, which is independently maintained.

[as said from the Real-Time Linux Wiki]

patch at


Grsecurity is a security focused patchset. It adds numerous security related features such as Role-Based Access Control and utilizes features of the PaX project. It can be used on a desktop but a public server would receive the greatest benefit. Some applications are incompatible with the additional security measures implemented by this patchset. If this occurs, consider using a lower security level.

The -grsecurity patches can be found at


The goal of Linux Tiny is to reduce its memory and disk footprint, as well as to add features to aid working on small systems. Target users are developers of embedded system and users of small or legacy machines such as 386s.

Patch releases against the mainstream Linux kernel have been discontinued. The developers chose to focus on a few patches and spend their time trying to get them merged into the mainline kernel.

Individual patches

These are patches which can be simply included in any build of a vanilla kernel or incorporated (probably with some major tweaking) into another patchset. I have included some common ones for starters.




Gensplash -


Arch Linux 提供了多种内核构建方式。

使用 Arch 构建系统(ABS)(推荐)

推荐使用 Arch 构建系统,这样可以充分利用已有的 linux PKGBUILD 以及包管理系统。PKGBUILD 已经是结构化的,你可以在下载源代码之后配置内核。

参见 编译内核/Arch 构建系统.


另外,也可以不使用 Arch 构建系统 编译内核(传统方式)。这个方法需要手动下载内核源代码包,然后在自己的主目录里以普通用户的权限编译。一旦完成配置之后,有两种编译(安装)方式:传统的安装和适用makepkg/pacman 的安装。


参见 传统方式 .

可以使用一个脚本来自动化传统的非 Arch 构建系统 的编译方式。参见 编译内核/脚本.


参见 定制内核 查看详细关于在自定义内核中使用 Nvidia 闭源驱动的方法。