SSH keys

From ArchWiki
Jump to navigation Jump to search

zh-CN:SSH Keys SSH keys serve as a means of identifying yourself to an SSH server using public-key cryptography and challenge-response authentication. One immediate advantage this method has over traditional password authentication is that you can be authenticated by the server without ever having to send your password over the network. Anyone eavesdropping on your connection will not be able to intercept and crack your password because it is never actually transmitted. Additionally, using SSH keys for authentication virtually eliminates the risk posed by brute-force password attacks by drastically reducing the chances of the attacker correctly guessing the proper credentials.

As well as offering additional security, SSH key authentication can be more convenient than the more traditional password authentication. When used with a program known as an SSH agent, SSH keys can allow you to connect to a server, or multiple servers, without having to remember or enter your password for each system.

SSH keys are not without their drawbacks and may not be appropriate for all environments, but in many circumstances they can offer some strong advantages. A general understanding of how SSH keys work will help you decide how and when to use them to meet your needs. This article assumes you already have a basic understanding of the Secure Shell protocol and have installed the openssh package, available in the official repositories.


SSH keys always come in pairs, one private and the other public. The private key is known only to you and it should be safely guarded. By contrast, the public key can be shared freely with any SSH server to which you would like to connect.

When an SSH server has your public key on file and sees you requesting a connection, it uses your public key to construct and send you a challenge. This challenge is like a coded message and it must be met with the appropriate response before the server will grant you access. What makes this coded message particularly secure is that it can only be understood by someone with the private key. While the public key can be used to encrypt the message, it cannot be used to decrypt that very same message. Only you, the holder of the private key, will be able to correctly understand the challenge and produce the correct response.

This challenge-response phase happens behind the scenes and is invisible to the user. As long as you hold the private key, which is typically stored in the ~/.ssh/ directory, your SSH client should be able to reply with the appropriate response to the server.

Because private keys are considered sensitive information, they are often stored on disk in an encrypted form. In this case, when the private key is required, a passphrase must first be entered in order to decrypt it. While this might superficially appear the same as entering a login password on the SSH server, it is only used to decrypt the private key on the local system. This passphrase is not, and should not be, transmitted over the network.

Generating an SSH key pair

An SSH key pair can be generated by running the ssh-keygen command:

$ ssh-keygen -t rsa -b 4096 -C "$(whoami)@$(hostname)-$(date -I)"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/username/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/username/.ssh/id_rsa.
Your public key has been saved in /home/username/.ssh/
The key fingerprint is:
dd:15:ee:24:20:14:11:01:b8:72:a2:0f:99:4c:79:7f username@localhost-2014-11-22
The key's randomart image is:
+--[RSA  4096]---+
|     ..oB=.   .  |
|    .    . . . . |
|  .  .      . +  |
| oo.o    . . =   |
|o+.+.   S . . .  |
|=.   . E         |
| o    .          |
|  .              |
|                 |

In the above example, ssh-keygen generates a 4096 bit long (-b 4096) public/private RSA (-t rsa) key pair with an extended comment including the data (-C "$(whoami)@$(hostname)-$(date -I)"). The randomart image was introduced in OpenSSH 5.1 as an easier means of visually identifying the key fingerprint.

Choosing the type of encryption

The Elliptic Curve Digital Signature Algorithm (ECDSA) provides smaller key sizes and faster operations for equivalent estimated security to the previous methods. It was introduced as the preferred algorithm for authentication in OpenSSH 5.7, see OpenSSH 5.7 Release Notes. ECDSA keys might not be compatible with systems that ship old versions of OpenSSH. Some vendors also disable the required implementations due to potential patent issues.

Warning: There is reason to be suspicious of the NIST curves used to generate ECDSA keys. Depending on the threat model, it might be advisable to use Ed25519 or RSA.
Note: As of December 28, 2013, the Windows SSH client PuTTY does not support ECDSA and cannot connect to a server that uses ECDSA keys.
Note: As of June 10, 2014, ECDSA keys will not work with GNOME Keyring because of a known GNOME bug.

As of OpenSSH 6.5 Ed25519 keys are supported: "Ed25519 is a elliptic curve signature scheme that offers better security than ECDSA and DSA and good performance."[1] They can be generated by ssh-keygen -t ed25519. There is no need to set the key size, as all Ed25519 keys are 256 bits.

If you choose to create an RSA (2048-16384 bit) or DSA (2048 bit) key pair instead, use the -t rsa or -t dsa switches in your ssh-keygen command and do not forget to increase the key size. Running ssh-keygen without the -b switch should provide reasonable defaults.

Note: These keys are used only to authenticate you; choosing stronger keys will not increase CPU load when transferring data over SSH.

Choosing the key location and passphrase

Upon issuing the ssh-keygen command, you will be prompted for the desired name and location of your private key. By default, keys are stored in the ~/.ssh/ directory and named according to the type of encryption used. You are advised to accept the default name and location in order for later code examples in this article to work properly.

When prompted for a passphrase, choose something that will be hard to guess if you have the security of your private key in mind. A longer, more random password will generally be stronger and harder to crack should it fall into the wrong hands.

It is also possible to create your private key without a passphrase. While this can be convenient, you need to be aware of the associated risks. Without a passphrase, your private key will be stored on disk in an unencrypted form. Anyone who gains access to your private key file will then be able to assume your identity on any SSH server to which you connect using key-based authentication. Furthermore, without a passphrase, you must also trust the root user, as he can bypass file permissions and will be able to access your unencrypted private key file at any time.

Changing the private key's passphrase without changing the key

If the originally chosen SSH key passphrase is undesirable or must be changed, one can use the ssh-keygen command to change the passphrase without changing the actual key.

To change the passphrase for the private RSA key, run the following command:

$ ssh-keygen -f ~/.ssh/id_rsa -p

Managing multiple keys

It is possible to manage keys per host by creating the file ~/.ssh/config and assigning each host another key for authentication if needed. Actually it is not needed, because you could use the same identity for each host. Yet, you do not want to use the same key for each client, then create this file like shown here:

  IdentitiesOnly yes
  IdentityFile ~/.ssh/id_rsa_SERVER1
  # CheckHostIP yes
  # Port 22
  IdentitiesOnly yes
  IdentityFile ~/.ssh/id_rsa_SERVER2
  # CheckHostIP no
  # Port 2177
ControlMaster auto
ControlPath /tmp/%r@%h:%p

Many more options you will find with

$ man ssh_config 5

Copying the public key to the remote server

Once you have generated a key pair, you will need to copy the public key to the remote server so that it will use SSH key authentication. The public key file shares the same name as the private key except that it is appended with a .pub extension. Note that the private key is not shared and remains on the local machine.

Simple method

Note: This method might fail if the remote server uses a non-sh shell such as tcsh as default. See this bug report.

If your key file is ~/.ssh/ you can simply enter the following command.

$ ssh-copy-id

If your username differs on remote machine, be sure to prepend the username followed by @ to the server name.

$ ssh-copy-id

If your public key filename is anything other than the default of ~/.ssh/ you will get an error stating /usr/bin/ssh-copy-id: ERROR: No identities found. In this case, you must explicitly provide the location of the public key.

$ ssh-copy-id -i ~/.ssh/

If the ssh server is listening on a port other than default of 22, be sure to include it within the host argument.

$ ssh-copy-id -i ~/.ssh/ -p 221

Manual method

By default, for OpenSSH, the public key needs to be concatenated with ~/.ssh/authorized_keys. Begin by copying the public key to the remote server.

$ scp ~/.ssh/

The above example copies the public key ( to your home directory on the remote server via scp. Do not forget to include the : at the end of the server address. Also note that the name of your public key may differ from the example given.

On the remote server, you will need to create the ~/.ssh directory if it does not yet exist and append your public key to the authorized_keys file.

$ ssh's password:
$ mkdir ~/.ssh
$ chmod 700 ~/.ssh
$ cat ~/ >> ~/.ssh/authorized_keys
$ rm ~/
$ chmod 600 ~/.ssh/authorized_keys

The last two commands remove the public key file from the server and set the permissions on the authorized_keys file such that it is only readable and writable by you, the owner.


Securing the authorized_keys file

For additional protection, you can prevent users from adding new public keys and connecting from them.

In the server, make the authorized_keys file read-only for the user and deny all other permissions:

$ chmod 400 ~/.ssh/authorized_keys

To keep the user from simply changing the permissions back, set the immutable bit on the authorized_keys file. After that the user could rename the ~/.ssh directory to something else and create a new ~/.ssh directory and authorized_keys file. To prevent this, set the immutable bit on the ~/.ssh directory too.

Note: If you find yourself needing to add a new key, you will first have to remove the immutable bit from authorized_keys and make it writable. Follow the steps above to secure it again.

Disabling password logins

While copying your public key to the remote SSH server eliminates the need to transmit your password over the network, it does not give any added protection against a brute-force password attack. In the absence of a private key, the SSH server will fall back to password authentication by default, thus allowing a malicious user to attempt to gain access by guessing your password. To disable this behavior, edit the following lines in the /etc/ssh/sshd_config file on the remote server.

PasswordAuthentication no
ChallengeResponseAuthentication no

Two-factor authentication and public keys

Since OpenSSH 6.2, you can add your own chain to authenticate with using the AuthenticationMethods option. This enables you to use public keys as well as a two-factor authorization.

See Google Authenticator to set up Google Authenticator.

To use PAM with OpenSSH, edit the following files:

ChallengeResponseAuthentication yes
AuthenticationMethods publickey keyboard-interactive:pam

Then you can log in with either a publickey or the user authentication as required by your PAM setup.

If, on the other hand, you want to authenticate the user on both a publickey and the user authentication as required by your PAM setup, use a comma instead of a space to separate the AuthenticationMethods:

ChallengeResponseAuthentication yes
AuthenticationMethods publickey,keyboard-interactive:pam

SSH agents

If your private key is encrypted with a passphrase, this passphrase must be entered every time you attempt to connect to an SSH server using public-key authentication. Each individual invocation of ssh or scp will need the passphrase in order to decrypt your private key before authentication can proceed.

An SSH agent is a program which caches your decrypted private keys and provides them to SSH client programs on your behalf. In this arrangement, you must only provide your passphrase once, when adding your private key to the agent's cache. This facility can be of great convenience when making frequent SSH connections.

An agent is typically configured to run automatically upon login and persist for the duration of your login session. A variety of agents, front-ends, and configurations exist to achieve this effect. This section provides an overview of a number of different solutions which can be adapted to meet your specific needs.


ssh-agent is the default agent included with OpenSSH. It can be used directly or serve as the back-end to a few of the front-end solutions mentioned later in this section. When ssh-agent is run, it will fork itself to the background and print out the environment variables it would use.

$ ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-vEGjCM2147/agent.2147; export SSH_AUTH_SOCK;
echo Agent pid 2148;

To make use of these variables, run the command through the eval command.

$ eval $(ssh-agent)
Agent pid 2157
Tip: You can append the above command to your ~/.bash_profile script so that it will run automatically when starting a login shell.

Once ssh-agent is running, you will need to add your private key to its cache.

$ ssh-add ~/.ssh/id_ecdsa
Enter passphrase for /home/user/.ssh/id_ecdsa:
Identity added: /home/user/.ssh/id_ecdsa (/home/user/.ssh/id_ecdsa)

If you would like your private keys to be added automatically on login. Add the following command to your ~/.bash_profile as well.

$ ssh-add

If your private key is encrypted, ssh-add will prompt you to enter your passphrase. Once your private key has been successfully added to the agent you will be able to make SSH connections without having to enter a passphrase.

If you would prefer not to be prompted for your passphrase until your key is needed, adding

$ ssh-add -l >/dev/null || alias ssh='ssh-add -l >/dev/null || ssh-add && unalias ssh; ssh'

to ~/.bashrc will cause ssh-add to be run when needed and destroy the alias afterwards.

One downside to this approach is that a new instance of ssh-agent is created for every login shell and each instance will persist between login sessions. Over time you can wind up with dozens of needless ssh-agent processes running. There exist a number of front-ends to ssh-agent and alternative agents described later in this section which avoid this problem.

Another downside is that the key will not be added by commands other than ssh that use the private key, such as many git commands.

Start ssh-agent with systemd user

It is possible to use the systemd/User facilities to start the agent.

Description=SSH key agent

ExecStart=/usr/bin/ssh-agent -a $SSH_AUTH_SOCK


Add export SSH_AUTH_SOCK="$XDG_RUNTIME_DIR/ssh-agent.socket" to your shell's startup file, for example .bash_profile for Bash. Then enable or start the service.

ssh-agent as a wrapper program

An alternative way to start ssh-agent (with, say, each X session) is described in this ssh-agent tutorial by UC Berkeley Labs. A basic use case is if you normally begin X with the startx command, you can instead prefix it with ssh-agent like so:

$ ssh-agent startx

And so you do not even need to think about it you can put an alias in your .bash_aliases file or equivalent:

alias startx='ssh-agent startx'

Doing it this way avoids the problem of having extraneous ssh-agent instances floating around between login sessions. Exactly one instance will live and die with the entire X session.

Note: You can also add eval $(ssh-agent) to ~/.xinitrc.

See the below notes on using x11-ssh-askpass with ssh-add for an idea on how to immediately add your key to the agent.

GnuPG Agent

Merge-arrows-2.pngThis article or section is a candidate for merging with GnuPG#gpg-agent.Merge-arrows-2.png

Notes: This section should just refer to the main article. (Discuss in Talk:SSH keys#)

The GnuPG agent, distributed with the gnupg package, available in the official repositories, has OpenSSH agent emulation. If you already use the GnuPG suite, you might consider using its agent to also cache your SSH keys. Additionally, some users may prefer the PIN entry dialog GnuPG agent provides as part of its passphrase management.

Note: If you are using KDE and have kde-agent installed you only need to set enable-ssh-support into ~/.gnupg/gpg-agent.conf! Otherwise, continue reading.

To start using GnuPG agent for your SSH keys, you should first start gpg-agent with the --enable-ssh-support option. Example (do not forget to make the file executable):


# Start the GnuPG agent and enable OpenSSH agent emulation

if pgrep -x -u "${USER}" gpg-agent >/dev/null 2>&1; then
    eval `cat $gnupginf`
    eval `cut -d= -f1 $gnupginf | xargs echo export`
    eval `gpg-agent -s --enable-ssh-support --daemon --write-env-file "$gnupginf"`

Once gpg-agent is running you can use ssh-add to approve keys, just like you did with plain ssh-agent. The list of approved keys is stored in the ~/.gnupg/sshcontrol file. Once your key is approved, you will get a PIN entry dialog every time your passphrase is needed. You can control passphrase caching in the ~/.gnupg/gpg-agent.conf file. The following example would have gpg-agent cache your keys for 3 hours:

  # Cache settings
  default-cache-ttl 10800
  default-cache-ttl-ssh 10800

Other useful settings for this file include the PIN entry program (GTK, QT, or ncurses version), keyboard grabbing, and so on...

Note: gpg-agent.conf must be created, and the variable write-env-file must be set in order to allow gpg-agent keys to be injected to SSH across logins, unless you restart gpg-agent, and therefore, export its settings, with every login.
  # Environment file
  write-env-file /home/username/.gpg-agent-info
  # Keyboard control
  # PIN entry program
  #pinentry-program /usr/bin/pinentry-curses
  #pinentry-program /usr/bin/pinentry-qt4
  #pinentry-program /usr/bin/pinentry-kwallet
  pinentry-program /usr/bin/pinentry-gtk-2

Tango-inaccurate.pngThe factual accuracy of this article or section is disputed.Tango-inaccurate.png

Reason: GPG_AGENT_INFO is deprecated, see GnuPG#GPG AGENT INFO (Discuss in Talk:SSH_keys#GnuPG_Agent)

To use the agent, you can then source and export the environment variables that gpg-agent writes in .gpg-agent-info, which is the file specified with write-env-file.


if [ -f "${HOME}/.gpg-agent-info" ]; then
  . "${HOME}/.gpg-agent-info"
  export SSH_AUTH_SOCK


Keychain is a program designed to help you easily manage your SSH keys with minimal user interaction. It is implemented as a shell script which drives both ssh-agent and ssh-add. A notable feature of Keychain is that it can maintain a single ssh-agent process across multiple login sessions. This means that you only need to enter your passphrase once each time your local machine is booted.

Install the keychain package, available from the official repositories.

Append the following line to ~/.bash_profile:

eval $(keychain --eval --agents ssh -Q --quiet id_ecdsa)

In the above example, the --eval switch outputs lines to be evaluated by the opening eval command. This sets the necessary environments variables for SSH client to be able to find your agent. The --agents switch is not strictly necessary because Keychain will build the list automatically based on the existence of ssh-agent or gpg-agent on the system. Adding the --quiet switch will limit output to warnings, errors, and user prompts. If you want greater security, replace -Q with --clear but will be less convenient.

If necessary, replace ~/.ssh/id_ecdsa with the path to your private key. For those using a non-Bash compatible shell, see keychain --help or man keychain for details on other shells.

To test Keychain, log out from your session and log back in. If this is your first time running Keychain, it will prompt you for the passphrase of the specified private key. Because Keychain reuses the same ssh-agent process on successive logins, you should not have to enter your passphrase the next time you log in. You will only be prompted for your passphrase once each time the machine is rebooted.


An alternative to keychain is envoy. Envoy is available as envoy , or the Git version as envoy-gitAUR.

After installing it, set up the envoy socket by enabling envoy@ssh-agent.socket.

And add to your shell's rc file:

 envoy -t ssh-agent -a ssh_key
 source <(envoy -p)

If the key is ~/.ssh/id_rsa, ~/.ssh/id_dsa, ~/.ssh/id_ecdsa, or ~/.ssh/identity, the -a ssh_key parameter is not needed.

envoy with key passphrases stored in kwallet

If you have long passphrases for your SSH keys, remembering them can be a pain. So let us tell kwallet to store them! Along with envoy, install ksshaskpass and kdeutils-kwalletmanager from the official repositories. Next, enable the envoy socket in systemd (see above).

Note: As of April 30, 2015, if after installation ksshaskpass keeps asking for access to your wallet even after having submitted the password, you might have [this] problem. The proposed solution is to install ksshaskpass4AUR, though this might break your login.

First, you will add this script to ~/.kde4/Autostart/

envoy -t ssh-agent -a ssh_key

Then, make sure the script is executable by running: chmod +x ~/.kde4/Autostart/

And add this to ~/.kde4/env/

eval $(envoy -p)

When you log into KDE, it will execute the script. This will call ksshaskpass, which will prompt you for your kwallet password when envoy calls ssh-agent.


The x11-ssh-askpass package provides a graphical dialog for entering your passhrase when running an X session. x11-ssh-askpass depends only on the libx11 and libxt libraries, and the appearance of x11-ssh-askpass is customizable. While it can be invoked by the ssh-add program, which will then load your decrypted keys into ssh-agent, the following instructions will, instead, configure x11-ssh-askpass to be invoked by the aforementioned Keychain script.

Install keychain and x11-ssh-askpass, both available in the official repositories.

Edit your ~/.xinitrc file to include the following lines, replacing the name and location of your private key if necessary. Be sure to place these commands before the line which invokes your window manager.

keychain ~/.ssh/id_ecdsa
[ -f ~/.keychain/$HOSTNAME-sh ] && . ~/.keychain/$HOSTNAME-sh 2>/dev/null
[ -f ~/.keychain/$HOSTNAME-sh-gpg ] && . ~/.keychain/$HOSTNAME-sh-gpg 2>/dev/null
exec openbox-session

In the above example, the first line invokes keychain and passes the name and location of your private key. If this is not the first time keychain was invoked, the following two lines load the contents of $HOSTNAME-sh and $HOSTNAME-sh-gpg, if they exist. These files store the environment variables of the previous instance of keychain.

Calling x11-ssh-askpass with ssh-add

The ssh-add manual page specifies that, in addition to needing the DISPLAY variable defined, you also need SSH_ASKPASS set to the name of your askpass program (in this case x11-ssh-askpass). It bears keeping in mind that the default Arch Linux installation places the x11-ssh-askpass binary in /usr/lib/ssh/, which will not be in most people's PATH. This is a little annoying, not only when declaring the SSH_ASKPASS variable, but also when theming. You have to specify the full path everywhere. Both inconveniences can be solved simultaneously by symlinking:

$ ln -sv /usr/lib/ssh/x11-ssh-askpass ~/bin/ssh-askpass

This is assuming that ~/bin is in your PATH. So now in your .xinitrc, before calling your window manager, one just needs to export the SSH_ASKPASS environment variable:

$ export SSH_ASKPASS=ssh-askpass

and your X resources will contain something like:

ssh-askpass*background: #000000

Doing it this way works well with the above method on using ssh-agent as a wrapper program. You start X with ssh-agent startx and then add ssh-add to your window manager's list of start-up programs.


The appearance of the x11-ssh-askpass dialog can be customized by setting its associated X resources. The x11-ssh-askpass home page[dead link 2015-04-01] presents some example themes[dead link 2015-04-01]. See the x11-ssh-askpass manual page for full details.

Alternative passphrase dialogs

There are other passphrase dialog programs which can be used instead of x11-ssh-askpass. The following list provides some alternative solutions.

  • ksshaskpass is available in the official repositories. It is dependent on kdelibs and is suitable for the KDE Desktop Environment.
  • openssh-askpass depends on the qt4 libraries and is available from the official repositories.


The pam_ssh project exists to provide a Pluggable Authentication Module (PAM) for SSH private keys. This module can provide single sign-on behavior for your SSH connections. On login, your SSH private key passphrase can be entered in place of, or in addition to, your traditional system password. Once you have been authenticated, the pam_ssh module spawns ssh-agent to store your decrypted private key for the duration of the session.

To enable single sign-on behavior at the tty login prompt, install the unofficial pam_sshAUR package, available in the Arch User Repository.

Note: pam_ssh 2.0 now requires that all private keys used in the authentication process be located under ~/.ssh/login-keys.d/.

Create a symlink to your private key file and place it in ~/.ssh/login-keys.d/. Replace the id_rsa in the example below with the name of your own private key file.

$ mkdir ~/.ssh/login-keys.d/
$ cd ~/.ssh/login-keys.d/
$ ln -s ../id_rsa

Edit the /etc/pam.d/login configuration file to include the text highlighted in bold in the example below. The order in which these lines appear is significiant and can affect login behavior.

Warning: Misconfiguring PAM can leave the system in a state where all users become locked out. Before making any changes, you should have an understanding of how PAM configuration works as well as a backup means of accessing the PAM configuration files, such as an Arch Live CD, in case you become locked out and need to revert any changes. An IBM developerWorks article is available which explains PAM configuration in further detail.

auth       required
auth       requisite
auth       include      system-local-login
auth       optional        try_first_pass
account    include      system-local-login
session    include      system-local-login
session    optional

In the above example, login authentication initially proceeds as it normally would, with the user being prompted to enter his user password. The additional auth authentication rule added to the end of the authentication stack then instructs the pam_ssh module to try to decrypt any private keys found in the ~/.ssh/login-keys.d directory. The try_first_pass option is passed to the pam_ssh module, instructing it to first try to decrypt any SSH private keys using the previously entered user password. If the user's private key passphrase and user password are the same, this should succeed and the user will not be prompted to enter the same password twice. In the case where the user's private key passphrase user password differ, the pam_ssh module will prompt the user to enter the SSH passphrase after the user password has been entered. The optional control value ensures that users without an SSH private key are still able to log in. In this way, the use of pam_ssh will be transparent to users without an SSH private key.

If you use another means of logging in, such as an X11 display manager like SLiM or XDM and you would like it to provide similar functionality, you must edit its associated PAM configuration file in a similar fashion. Packages providing support for PAM typically place a default configuration file in the /etc/pam.d/ directory.

Further details on how to use pam_ssh and a list of its options can be found in the pam_ssh man page.

Known issues with pam_ssh

Work on the pam_ssh project is infrequent and the documentation provided is sparse. You should be aware of some of its limitations which are not mentioned in the package itself.

  • Versions of pam_ssh prior to version 2.0 do not support SSH keys employing the newer option of ECDSA (elliptic curve) cryptography. If you are using earlier versions of pam_ssh you must use either RSA or DSA keys.
  • The ssh-agent process spawned by pam_ssh does not persist between user logins. If you like to keep a GNU Screen session active between logins you may notice when reattaching to your screen session that it can no longer communicate with ssh-agent. This is because the GNU Screen environment and those of its children will still reference the instance of ssh-agent which existed when GNU Screen was invoked but was subsequently killed in a previous logout. The Keychain front-end avoids this problem by keeping the ssh-agent process alive between logins.

GNOME Keyring

If you use the GNOME desktop, the GNOME Keyring tool can be used as an SSH agent. See the GNOME Keyring article for further details.

Store SSH keys with Kwallet

For instructions on how to use kwallet to store your SSH keys, see KDE Wallet#Using the KDE Wallet to store ssh keys.


Key ignored by the server

If it appears that the SSH server is ignoring your keys, ensure that you have the proper permissions set on all relevant files.
For the local machine:

$ chmod 700 ~/
$ chmod 700 ~/.ssh
$ chmod 600 ~/.ssh/id_ecdsa

For the remote machine:

$ chmod 700 ~/
$ chmod 700 ~/.ssh
$ chmod 600 ~/.ssh/authorized_keys

If that does not solve the problem you may try temporarily setting StrictModes to no in sshd_config. If authentication with StrictModes off is successful, it is likely an issue with file permissions persists.

Tip: Do not forget to set StrictModes to yes for added security.

Make sure the remote machine supports the type of keys you are using. Try using RSA or DSA keys instead #Generating an SSH key pair

Some servers do not support ECDSA keys. 

Failing this, run the sshd in debug mode and monitor the output while connecting:

# /usr/bin/sshd -d

Using KDM

KDM does not launch the ssh-agent process directly, kde-agent used to start ssh-agent on login, but since version 20140102-1 it got removed.

In order to start ssh-agent on KDE startup for a user, create scripts to start ssh-agent on startup and one to kill it on logoff:

$ echo -e '#!/bin/sh\n[ -n "$SSH_AGENT_PID" ] || eval "$(ssh-agent -s)"' > ~/.kde4/env/
$ echo -e '#!/bin/sh\n[ -z "$SSH_AGENT_PID" ] || eval "$(ssh-agent -k)"' > ~/.kde4/shutdown/
$ chmod 755 ~/.kde4/env/ ~/.kde4/shutdown/

If you are using Plasma 5, you must create the scripts in the ~/.config/plasma-workspace/ directory, instead of ~/.kde4:

$ echo -e '#!/bin/sh\n[ -n "$SSH_AGENT_PID" ] || eval "$(ssh-agent -s)"' > ~/.config/plasma-workspace/env/
$ echo -e '#!/bin/sh\n[ -z "$SSH_AGENT_PID" ] || eval "$(ssh-agent -k)"' > ~/.config/plasma-workspace/shutdown/
$ chmod 755 ~/.config/plasma-workspace/env/ ~/.config/plasma-workspace/shutdown/

See also