systemd-networkd (简体中文)

From ArchWiki
Revision as of 20:30, 20 June 2019 by Lahwaacz.bot (talk | contribs) (update interlanguage links)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

翻译状态: 本文是英文页面 Systemd-networkd翻译,最后翻译时间:2019-06-18,点击这里可以查看翻译后英文页面的改动。

systemd-networkd 是一个管理网络配置的系统守护进程。它会在网络设备出现时检测和配置;它还可以创建虚拟网络设备。这个服务对被 systemd-nspawn 管理的容器或者虚拟机的复杂网络配置尤其有用,同样也适用于简单的网络配置。

基本用法

systemd 是默认 Arch 安装的一部分,包含操作有线网络所需所有文件。本文后面介绍的无线适配器可以通过其他服务配置,比如 wpa_supplicant 或者 iwd

必须的服务和设置

start/enable systemd-networkd.service 以使用 systemd-networkd

start/enable systemd-resolved.service 是可选的,它是本地应用程序的网络名称解析服务,考虑到下列因素:

  • 如果 .network 文件中指定了 DNS 条目,systemd-resolved 服务是必须的,
  • 它能够被用来自动的从 DHCP 客户端获取 DNS 地址,
  • 重要的是要了解 resolv.confsystemd-resolved 如何进行交互以正确配置将要使用的 DNS,systemd-resolved 中提供了一些解释,
  • 注意 systemd-resolved 也能够在离开 systemd-networkd 的情况下使用。

配置样例

在本节中,所有配置都存储为在 /etc/systemd/network/ 目录下 形如 foo.network 的文件。有关选项的完整列表和处理顺序可以参考 #Configuration filessystemd.network(5)

Systemd/udev 会自动为所有本地以太网,WLAN 和 WWAN 接口分配可预测,稳定的网络接口名。使用 networkctl list 以列出系统上所有设备。

在修改了配置文件之后,restart systemd-networkd.service 以使得它们生效。


Note:
  • 配置文件中指定的选项区分大小写。
  • 在下面的示例中,enp1s0 是有线适配器,wlp2s0 是无线适配器。他们的名字在不同系统上可能会有不同的名字。也可以使用通配符,例如,Name=en*
  • 如果想要禁用 IPv6 的话,参考 IPv6#systemd-networkd
  • [Network] 段设置 DHCP=yes 来同时接收 IPv4 IPv6 DHCP 请求。

使用 DHCP 的有线适配器

/etc/systemd/network/20-wired.network
[Match]
Name=enp1s0

[Network]
DHCP=ipv4

使用静态 IP 的有线适配器

/etc/systemd/network/20-wired.network
[Match]
Name=enp1s0

[Network]
Address=10.1.10.9/24
Gateway=10.1.10.1
DNS=10.1.10.1
#DNS=8.8.8.8

Address= 能够被使用多次来指定多个 IPv4 或者 IPv6 地址。 参见 #network files 或者 systemd.network(5) 了解更多配置项。

无线适配器

为了能够使用 systemd-networkd 连接一个无线网络,需要一个被其他应用,比如 WPA supplicantIwd,配置好的无线适配器。

/etc/systemd/network/25-wireless.network
[Match]
Name=wlp2s0

[Network]
DHCP=ipv4

如果无线适配器有一个静态地址,它的配置(除了接口的名字)跟有线适配器是一样的。

Wired and wireless adapters on the same machine

This setup will enable a DHCP IP for both a wired and wireless connection making use of the metric directive to allow the kernel to decide on-the-fly which one to use. This way, no connection downtime is observed when the wired connection is unplugged.

The kernel's route metric (same as configured with ip) decides which route to use for outgoing packets, in cases when several match. This will be the case when both wireless and wired devices on the system have active connections. To break the tie, the kernel uses the metric. If one of the connections is terminated, the other automatically wins without there being a gap with nothing configured (ongoing transfers may still not deal with this nicely but that is at a different OSI layer).

Note: The Metric option is for static routes while the RouteMetric option is for setups not using static routes. See systemd.network(5) for more details.
/etc/systemd/network/20-wired.network
[Match]
Name=enp1s0

[Network]
DHCP=ipv4

[DHCP]
RouteMetric=10
/etc/systemd/network/25-wireless.network
[Match]
Name=wlp2s0

[Network]
DHCP=ipv4

[DHCP]
RouteMetric=20

Renaming an interface

Instead of editing udev rules, a .link file can be used to rename an interface. A useful example is to set a predictable interface name for a USB-to-Ethernet adapter based on its MAC address, as those adapters are usually given different names depending on which USB port they are plugged into.

/etc/systemd/network/10-ethusb0.link
[Match]
MACAddress=12:34:56:78:90:ab

[Link]
Description=USB to Ethernet Adapter
Name=ethusb0
Note: Any user-supplied .link must have a lexically earlier file name than the default config 99-default.link in order to be considered at all. For example, name the file 10-ethusb0.link and not ethusb0.link.

Configuration files

Configuration files are located in /usr/lib/systemd/network, the volatile runtime network directory /run/systemd/network and the local administration network directory /etc/systemd/network. Files in /etc/systemd/network have the highest priority.

There are three types of configuration files. They all use a format similar to systemd unit files.

  • .network files. They will apply a network configuration for a matching device
  • .netdev files. They will create a virtual network device for a matching environment
  • .link files. When a network device appears, udev will look for the first matching .link file

They all follow the same rules:

  • If all conditions in the [Match] section are matched, the profile will be activated
  • an empty [Match] section means the profile will apply in any case (can be compared to the * wildcard)
  • all configuration files are collectively sorted and processed in lexical order, regardless of the directory in which they live
  • files with identical name replace each other
Tip:
  • To override a system-supplied file in /usr/lib/systemd/network in a permanent manner (i.e even after upgrade), place a file with same name in /etc/systemd/network and symlink it to /dev/null
  • The * wildcard can be used in VALUE (e.g en* will match any Ethernet device), a boolean can be simple written as yes or no.
  • Following this Arch-general thread, the best practice is to setup specific container network settings inside the container with networkd configuration files.
  • Systemd accepts the values 1, true, yes, on for a true boolean, and the values 0, false, no, off for a false boolean

network files

These files are aimed at setting network configuration variables, especially for servers and containers.

.network files have the following sections: [Match], [Link], [Network], [Address], [Route], and [DHCP]. Below are commonly configured keys for each section. See systemd.network(5) for more information and examples.

[Match]

  • MACAddress= a whitespace-separated list of hardware addresses
  • Name= a white-space separated list of device names, which may contain globs (e.g. en*). By prefixing with !, the list can be inverted.
  • Host= the machine hostname
  • Virtualization= check whether the system is executed in a virtualized environment or not. A Virtualization=no key will only apply on your host machine, while Virtualization=yes apply to any container or VM.

[Link]

  • MACAddress= useful for MAC address spoofing
  • MTUBytes= setting a larger MTU value (e.g. when using jumbo frames) can significantly speed up your network transfers
  • Multicast allow the usage of multicast on interface(s)

[Network]

Parameter Description Accepted Values Default Value
DHCP= Controls DHCPv4 and/or DHCPv6 client support. boolean, ipv4, ipv6 false
DHCPServer= If enabled, a DHCPv4 server will be started. boolean false
MulticastDNS= Enables multicast DNS support. When set to resolve, only resolution is enabled, but not host or service registration and announcement. boolean, resolve false
DNSSEC= Controls DNSSEC DNS validation support on the link. When set to allow-downgrade, compatibility with non-DNSSEC capable networks is increased, by automatically turning off DNSSEC in this case. boolean, allow-downgrade false
DNS= Configure static DNS addresses. May be specified more than once. inet_pton
Domains= A list of domains which should be resolved using the DNS servers on this link. more information domain name, optionally prefixed with a tilde (~)
IPForward= If enabled, incoming packets on any network interface will be forwarded to any other interfaces according to the routing table. boolean, ipv4, ipv6 false
IPv6PrivacyExtensions= Configures use of stateless temporary addresses that change over time (see RFC 4941). When prefer-public, enables the privacy extensions, but prefers public addresses over temporary addresses. When kernel, the kernel's default setting will be left in place. boolean, prefer-public, kernel false

[Address]

  • Address= this option is mandatory unless DHCP is used

[Route]

  • Gateway= this option is mandatory unless DHCP is used
  • Destination= the destination prefix of the route, possibly followed by a slash and the prefix length

If Destination is not present in [Route] section this section is treated as a default route.

Tip: You can put the Address= and Gateway= keys in the [Network] section as a short-hand if [Address] section contains only an Address key and [Route] section contains only a Gateway key.

[DHCP]

Parameter Description Accepted Values Default Value
UseDNS= controls whether the DNS servers advertised by the DHCP server are used boolean true
Anonymize= when true, the options sent to the DHCP server will follow the RFC7844 (Anonymity Profiles for DHCP Clients) to minimize disclosure of identifying information boolean false
UseDomains= controls whether the domain name received from the DHCP server will be used as DNS search domain. If set to route, the domain name received from the DHCP server will be used for routing DNS queries only, but not for searching. This option can sometimes fix local name resolving when using systemd-resolved boolean, route false

netdev files

These files will create virtual network devices. They have two sections: [Match] and [NetDev]. Below are commonly configured keys for each section. See systemd.netdev(5) for more information and examples.

[Match] section

  • Host= the hostname
  • Virtualization= check if running in a VM

[NetDev] section

Most common keys are:

  • Name= the interface name. mandatory
  • Kind= e.g. bridge, bond, vlan, veth, sit, etc. mandatory

link files

These files are an alternative to custom udev rules and will be applied by udev as the device appears. They have two sections: [Match] and [Link]. Below are commonly configured keys for each section. See systemd.link(5) for more information and examples.

Tip: Use # udevadm test-builtin net_setup_link /sys/path/to/network/device to diagnose problems with .link files.

[Match] section

  • MACAddress= the MAC address
  • Host= the host name
  • Virtualization=
  • Type= the device type e.g. vlan

[Link] section

  • MACAddressPolicy= persistent or random addresses, or
  • MACAddress= a specific address
Note: the system /usr/lib/systemd/network/99-default.link is generally sufficient for most of the basic cases.

Usage with containers

The service is available with systemd. You will want to enable and start the systemd-networkd.service unit on the host and container.

For debugging purposes, it is strongly advised to install the bridge-utils, net-tools, and iproute2 packages.

If you are using systemd-nspawn, you may need to modify the systemd-nspawn@.service and append boot options to the ExecStart line. Please refer to systemd-nspawn(1) for an exhaustive list of options.

Note that if you want to take advantage of automatic DNS configuration from DHCP, you need to enable systemd-resolved and symlink /run/systemd/resolve/resolv.conf to /etc/resolv.conf. See systemd-resolved.service(8) for more details.

Before you start to configure your container network, it is useful to:

  • disable all your netctl (host and container), dhcpcd (host and container), systemd-networkd (container only) and systemd-nspawn@.service (host only) services to avoid potential conflicts and to ease debugging
  • make sure packet forwarding is enabled if you want to let containers access the internet. Make sure that your .network file does not accidentally turn off forwarding because if you do not have a IPForward=1 setting in it, systemd-networkd will turn off forwarding on this interface, even if you have it enabled globally.
  • make sure you do not have any iptables rules which can block traffic
  • when the daemon is started the systemd networkctl command displays the status of network interfaces.

For the set-up described below,

  • we will limit the output of the ip a command to the concerned interfaces
  • we assume the host is your main OS you are booting to and the container is your guest virtual machine
  • all interface names and IP addresses are only examples

Basic DHCP network

This setup will enable a DHCP IP for host and container. In this case, both systems will share the same IP as they share the same interfaces.

/etc/systemd/network/MyDhcp.network
[Match]
Name=en*

[Network]
DHCP=ipv4

Then, enable and start systemd-networkd.service on your container.

You can of course replace en* by the full name of your ethernet device given by the output of the ip link command.

  • on host and container:
$ ip a
2: enp7s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 14:da:e9:b5:7a:88 brd ff:ff:ff:ff:ff:ff
    inet 192.168.1.72/24 brd 192.168.1.255 scope global enp7s0
       valid_lft forever preferred_lft forever
    inet6 fe80::16da:e9ff:feb5:7a88/64 scope link 
       valid_lft forever preferred_lft forever

By default, hostname received from the DHCP server will be used as the transient hostname.

To change it add UseHostname=false in section [DHCPv4]

/etc/systemd/network/MyDhcp.network
[DHCPv4]
UseHostname=false

If you did not want to configure a DNS in /etc/resolv.conf and want to rely on DHCP for setting it up, you need to enable systemd-resolved.service and symlink /run/systemd/resolve/resolv.conf to /etc/resolv.conf

# ln -sf /run/systemd/resolve/resolv.conf /etc/resolv.conf

See systemd-resolved.service(8) for more details.

Note: Users accessing a system partition via /usr/bin/arch-chroot from arch-install-scripts, will need to create the symlink outside of the chroot, on the mounted partition. This is due to arch-chroot linking the file to the live environment.

DHCP with two distinct IP

Bridge interface

First, create a virtual bridge interface. We tell systemd to create a device named br0 that functions as an ethernet bridge.

/etc/systemd/network/MyBridge.netdev
[NetDev]
Name=br0
Kind=bridge

Restart systemd-networkd.service to have systemd create the bridge.

On host and container:

$ ip a
3: br0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default 
    link/ether ae:bd:35:ea:0c:c9 brd ff:ff:ff:ff:ff:ff

Note that the interface br0 is listed but is still DOWN at this stage.

Bind ethernet to bridge

The next step is to add to the newly created bridge a network interface. In the example below, we add any interface that matches the name en* into the bridge br0.

/etc/systemd/network/bind.network
[Match]
Name=en*

[Network]
Bridge=br0

The ethernet interface must not have DHCP or an IP address associated as the bridge requires an interface to bind to with no IP: modify the corresponding /etc/systemd/network/MyEth.network accordingly to remove the addressing.

Bridge network

Now that the bridge has been created and has been bound to an existing network interface, the IP configuration of the bridge interface must be specified. This is defined in a third .network file, the example below uses DHCP.

/etc/systemd/network/mybridge.network
[Match]
Name=br0

[Network]
DHCP=ipv4

Add option to boot the container

As we want to give a separate IP for host and container, we need to Disconnect networking of the container from the host. To do this, add this option --network-bridge=br0 to your container boot command.

# systemd-nspawn --network-bridge=br0 -bD /path_to/my_container

Result

  • on host
$ ip a
3: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 14:da:e9:b5:7a:88 brd ff:ff:ff:ff:ff:ff
    inet 192.168.1.87/24 brd 192.168.1.255 scope global br0
       valid_lft forever preferred_lft forever
    inet6 fe80::16da:e9ff:feb5:7a88/64 scope link 
       valid_lft forever preferred_lft forever
6: vb-MyContainer: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br0 state UP group default qlen 1000
    link/ether d2:7c:97:97:37:25 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::d07c:97ff:fe97:3725/64 scope link 
       valid_lft forever preferred_lft forever
  • on container
$ ip a
2: host0: <BROADCAST,MULTICAST,ALLMULTI,AUTOMEDIA,NOTRAILERS,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 5e:96:85:83:a8:5d brd ff:ff:ff:ff:ff:ff
    inet 192.168.1.73/24 brd 192.168.1.255 scope global host0
       valid_lft forever preferred_lft forever
    inet6 fe80::5c96:85ff:fe83:a85d/64 scope link 
       valid_lft forever preferred_lft forever

Notice

  • we have now one IP address for br0 on the host, and one for host0 in the container
  • two new interfaces have appeared: vb-MyContainer in the host and host0 in the container. This comes as a result of the --network-bridge=br0 option. This option implies another option, --network-veth. This means a virtual Ethernet link has been created between host and container.
  • the DHCP address on host0 comes from the system /usr/lib/systemd/network/80-container-host0.network file.
  • on host
$ brctl show
bridge name	bridge id		STP enabled	interfaces
br0		8000.14dae9b57a88	no		enp7s0
							vb-MyContainer

the above command output confirms we have a bridge with two interfaces binded to.

  • on host
$ ip route
default via 192.168.1.254 dev br0 
192.168.1.0/24 dev br0  proto kernel  scope link  src 192.168.1.87
  • on container
$ ip route
default via 192.168.1.254 dev host0 
192.168.1.0/24 dev host0  proto kernel  scope link  src 192.168.1.73

the above command outputs confirm we have activated br0 and host0 interfaces with an IP address and Gateway 192.168.1.254. The gateway address has been automatically grabbed by systemd-networkd

$ cat /run/systemd/resolve/resolv.conf
nameserver 192.168.1.254

Static IP network

Setting a static IP for each device can be helpful in case of deployed web services (e.g FTP, http, SSH). Each device will keep the same MAC address across reboots if your system /usr/lib/systemd/network/99-default.link file has the MACAddressPolicy=persistent option (it has by default). Thus, you will easily route any service on your Gateway to the desired device.

The following configuration needs to be done for this setup:

  • on host

The configuration is very similar to that of #DHCP with two distinct IP. First, a virtual bridge interface needs to be created and the main physical interface needs to be bound to it. This task can be accomplished with the following two files, with contents equal to those available at the DHCP section.

/etc/systemd/network/MyBridge.netdev
/etc/systemd/network/MyEth.network

Next, you need to configure the IP and DNS of the newly created virtual bridge interface. The following MyBridge.network provides an example configuration:

/etc/systemd/network/MyBridge.network
[Match]
Name=br0

[Network]
DNS=192.168.1.254
Address=192.168.1.87/24
Gateway=192.168.1.254
  • on container

First, we shall get rid of the system /usr/lib/systemd/network/80-container-host0.network file, which provides a DHCP configuration for the default network interface of the container. To do it in a permanent way (e.g. even after systemd upgrades), do the following on the container. This will mask the file /usr/lib/systemd/network/80-container-host0.network since files of the same name in /etc/systemd/network take priority over /usr/lib/systemd/network. Keep in mind that this file can be kept if you only want a static IP on the host, and want the IP address of your containers to be assigned via DHCP.

# ln -sf /dev/null /etc/systemd/network/80-container-host0.network

Then, configure an static IP for the default host0 network interface and enable and start systemd-networkd.service on your container. An example configuration is provided below:

/etc/systemd/network/MyVeth.network
[Match]
Name=host0

[Network]
DNS=192.168.1.254
Address=192.168.1.94/24
Gateway=192.168.1.254

Interface and desktop integration

systemd-networkd does not have a proper interactive management interface neither via command-line nor graphical. Still, some tools are available to either display the current state of the network, receive notifications or interact with the wireless configuration:

  • networkctl (via CLI) offers a simple dump of the network interface states.
  • When networkd is configured with wpa_supplicant, both wpa_cli and wpa_gui offer the ability to associate and configure WLAN interfaces dynamically.
  • networkd-notify-gitAUR can generate simple notifications in response to network interface state changes (such as connection/disconnection and re-association).
  • The networkd-dispatcherAUR daemon allows executing scripts in response to network interface state changes, similar to NetworkManager-dispatcher.
  • As for the DNS resolver systemd-resolved, information about current DNS servers can be visualized with resolvectl status.

Troubleshooting

Mount services at boot fail

If running services like Samba/NFS which fail if they are started before the network is up, you may want to enable the systemd-networkd-wait-online.service. This is, however, rarely necessary because most networked daemons start up okay, even if the network has not been configured yet.

systemd-resolve not searching the local domain

Tango-go-next.pngThis article or section is a candidate for moving to systemd-resolved.Tango-go-next.png

Notes: The problem is with systemd-resolved. (Discuss in Talk:Systemd-networkd (简体中文)#)

systemd-resolved may not search the local domain when given just the hostname, even when UseDomains=yes or Domains=[domain-list] is present in the appropriate .network file, and that file produces the expected search [domain-list] in resolv.conf. You can run networkctl status or resolvectl status to check if the search domains are actually being picked up.

Possible workarounds:

  • Disable LLMNR to let systemd-resolved immediately continue with appending the DNS suffixes
  • Trim /etc/nsswitch.conf's hosts database (e.g., by removing [!UNAVAIL=return] option after resolve service)
  • Switch to using fully-qualified domain names
  • Use /etc/hosts to resolve hostnames
  • Fall back to using glibc's dns instead of using systemd's resolve

Connected second PC unable to use bridged LAN

Tango-go-next.pngThis article or section is a candidate for moving to Network configuration.Tango-go-next.png

Notes: Not specific to systemd-networkd. (Discuss in Talk:Systemd-networkd (简体中文)#)

First PC have two LAN. Second PC have one LAN and connected to first PC. Lets go second PC to give all access to LAN after bridged interface:

Tango-view-fullscreen.pngThis article or section needs expansion.Tango-view-fullscreen.png

Reason: Explain what the settings actually do. (Discuss in Talk:Systemd-networkd (简体中文)#)
# sysctl net.bridge.bridge-nf-filter-pppoe-tagged=0
# sysctl net.bridge.bridge-nf-filter-vlan-tagged=0
# sysctl net.bridge.bridge-nf-call-ip6tables=0
# sysctl net.bridge.bridge-nf-call-iptables=0
# sysctl net.bridge.bridge-nf-call-arptables=0

See also