Difference between revisions of "Time"

From ArchWiki
Jump to: navigation, search
(Notes: This information has no use here.)
(UTC in Windows: disable time synchronization)
(39 intermediate revisions by 20 users not shown)
Line 1: Line 1:
[[es:TIMEZONE]]
+
[[es:Time]]
 
[[fa:زمان]]
 
[[fa:زمان]]
 +
[[fr:Horloge]]
 
[[ru:Time]]
 
[[ru:Time]]
 
[[zh-CN:Time]]
 
[[zh-CN:Time]]
 
[[Category:Mainboards and BIOS]]        <!-- with regard to the hardware clock -->
 
[[Category:Mainboards and BIOS]]        <!-- with regard to the hardware clock -->
[[Category:Daemons and system services]] <!-- as the basis/rationale for NTP -->
+
[[Category:System administration]]
 
{{Article summary start}}
 
{{Article summary start}}
 
{{Article summary text|This article provides an introduction to the concept of keeping time on computers in general, and describes how clocks are configured and managed in Arch Linux.}}
 
{{Article summary text|This article provides an introduction to the concept of keeping time on computers in general, and describes how clocks are configured and managed in Arch Linux.}}
 
{{Article summary heading|Related}}
 
{{Article summary heading|Related}}
 
{{Article summary wiki|Network Time Protocol}}
 
{{Article summary wiki|Network Time Protocol}}
{{Article summary wiki|rc.conf}}
 
 
{{Article summary end}}
 
{{Article summary end}}
  
In an operating system the time (clock) is determined by four parts: Time value, Time standard, Time Zone, and DST ('''D'''aylight '''S'''aving '''T'''ime if applicable). This article explains what they are and how to read/set them. To ''maintain'' accurate system time on a network see [[Network Time Protocol]].
+
In an operating system the time (clock) is determined by four parts: Time value, Time standard, Time Zone, and Daylight Saving Time (DST) if applicable. This article explains what they are and how to read/set them. To ''maintain'' accurate system time on a network see [[Network Time Protocol]].
  
 
== Hardware clock and system clock ==
 
== Hardware clock and system clock ==
  
A computer has two clocks that need to be considered the "Hardware clock" and the "System/software clock":
+
A computer has two clocks that need to be considered: the "Hardware clock" and the "System/software clock".
  
 
'''Hardware clock''' (a.k.a. the Real Time Clock (RTC) or CMOS clock) stores the values of: Year, Month, Day, Hour, Minute, and the Seconds.  It does not have the ability to store the time standard (localtime or UTC), nor whether DST is used.  
 
'''Hardware clock''' (a.k.a. the Real Time Clock (RTC) or CMOS clock) stores the values of: Year, Month, Day, Hour, Minute, and the Seconds.  It does not have the ability to store the time standard (localtime or UTC), nor whether DST is used.  
  
'''System clock''' (a.k.a. the software clock) keeps track of: Time, Time Zone, and DST if applicable. It is calculated by the Linux kernel as the number of seconds since midnight January 1st 1970 UTC. The initial value of the system clock is calculated from the hardware clock, dependent on the value of the HARDWARECLOCK variable defined in {{ic|/etc/rc.conf}}.  After boot-up has completed the system clock runs independently of the hardware clock. The Linux kernel keeps track of the system clock by counting timer interrupts.
+
'''System clock''' (a.k.a. the software clock) keeps track of: Time, Time Zone, and DST if applicable. It is calculated by the Linux kernel as the number of seconds since midnight January 1st 1970, UTC. The initial value of the system clock is calculated from the hardware clock, dependent on the contents of {{ic|/etc/adjtime}} (or for systems still using the old initscripts the value of the HARDWARECLOCK variable defined in {{ic|/etc/rc.conf}}).  After boot-up has completed the system clock runs independently of the hardware clock. The Linux kernel keeps track of the system clock by counting timer interrupts.
  
 
=== Read clock ===
 
=== Read clock ===
Line 26: Line 26:
 
To check the current hardware clock time and system clock time respectively (the hardware clock time is presented in localtime even if the hardware clock set to UTC):
 
To check the current hardware clock time and system clock time respectively (the hardware clock time is presented in localtime even if the hardware clock set to UTC):
  
# hwclock --show
+
  $ timedatectl status
  $ date
+
  
 
=== Set clock ===
 
=== Set clock ===
Line 33: Line 32:
 
To set the system clock directly:
 
To set the system clock directly:
  
  # date MMDDhhmmYYYY
+
  # timedatectl set-time "2012-10-30 18:17:16"
  
To set the hardware clock directly (the argument must be in local time, even if you keep your hardware clock in UTC.):
+
=== RTC clock ===
# hwclock --set --date="YYYY-MM-DD hh:mm:ss"
+
 
+
The hardware clock can be set from the system clock and vice versa:
+
 
+
# hwclock --systohc
+
# hwclock --hctosys
+
 
+
=== hwclock daemon ===
+
  
 
Standard behavior of most operating systems is:
 
Standard behavior of most operating systems is:
Line 49: Line 40:
 
* Set the system clock from the hardware clock on boot
 
* Set the system clock from the hardware clock on boot
 
* Keep accurate time of the system clock with an [[Network Time Protocol daemon|NTP]] daemon
 
* Keep accurate time of the system clock with an [[Network Time Protocol daemon|NTP]] daemon
* Set the hardware clock from the system clock on shutdown. (On Arch Linux, the hardware clock is NOT set from system clock on shutdown. Although, it is adjusted for systematic drift with the --adjust flag).
+
* Set the hardware clock from the system clock on shutdown.
 
+
Arch Linux initscripts use '''hwclock''' to set the system clocks on boot, if {{ic|hwclock}} is in the [[daemon|daemons list]] in {{ic|/etc/rc.conf}} '''hwclock''' will also sync time on shutdown. Using the {{ic|hwclock}} daemon is not recommended if running the [[ntpd|NTP daemon]] as the NTP daemon adjusts the hardware clock, which may lead to {{ic|hwclock --adjust}} miscalculations.
+
  
 
== Time standard ==
 
== Time standard ==
  
There are two time standards: '''localtime''' and '''C'''oordinated '''U'''niversal '''T'''ime ('''UTC''').  The localtime standard is dependent on the current ''time zone'', while UTC is the ''global'' time standard and is independent of time zone values.  Though conceptually different, UTC is also known as GMT.
+
There are two time standards: '''localtime''' and '''C'''oordinated '''U'''niversal '''T'''ime ('''UTC''').  The localtime standard is dependent on the current ''time zone'', while UTC is the ''global'' time standard and is independent of time zone values.  Though conceptually different, UTC is also known as GMT (Greenwich Mean Time).
  
The standard used by hardware clock (CMOS clock, the time that appears in BIOS) is defined by operating system. By default, Windows uses localtime, Mac OS uses UTC, and UNIX-like operating systems vary. An OS that uses UTC standard, generally, will consider CMOS (hardware clock) time a UTC time (GMT, Greenwitch time) and make an adjustment to it while setting System time on boot according to your time zone.   
+
The standard used by hardware clock (CMOS clock, the time that appears in BIOS) is defined by the operating system. By default, Windows uses localtime, Mac OS uses UTC, and UNIX-like operating systems vary. An OS that uses the UTC standard, generally, will consider CMOS (hardware clock) time a UTC time (GMT, Greenwich time) and make an adjustment to it while setting the System time on boot according to your time zone.   
  
When using Linux it is beneficial to have the hardware clock set to the UTC standard and made known to all operating systems.  Defining the hardware clock in Linux as UTC means that Daylight Savings Time will automatically be accounted for.  If using the localtime standard the system clock will not be changed for DST occurrences assuming that another operating system will take care of the DST switch (and provided no NTP agent is operating).
+
When using Linux it is beneficial to have the hardware clock set to the UTC standard and made known to all operating systems.  Defining the hardware clock in Linux as UTC means that Daylight Saving Time will automatically be accounted for.  If using the localtime standard the system clock will not be changed for DST occurrences assuming that another operating system will take care of the DST switch (and provided no NTP agent is operating).
  
 
You can set the hardware clock time standard through the command line.  You can check what you have set your Arch Linux install to use by:
 
You can set the hardware clock time standard through the command line.  You can check what you have set your Arch Linux install to use by:
  
  $ grep ^HARDWARECLOCK /etc/rc.conf
+
  $ timedatectl status | grep local
  
The hardware clock can be queried and set with the {{ic|hwclock}} command.  To immediately change the hardware clock time standard to localtime use:
+
The hardware clock can be queried and set with the {{ic|hwclock}} command.  To change the hardware clock time standard to localtime use:
  
  # hwclock --localtime
+
  # timedatectl set-local-rtc 1
  
 
And to set it to UTC use:
 
And to set it to UTC use:
  
  # hwclock --utc
+
  # timedatectl set-local-rtc 0
  
The time standard that the hardware clock uses will also need to be entered in your Arch Linux system configuration ([[rc.conf]]) so that the system clock will be correctly set on boot:
+
These will generate {{ic|/etc/adjtime}} automatically; no further configuration is required.
  
  HARDWARECLOCK="localtime"
+
During kernel startup, at the point when the RTC driver is loaded, the system clock may be set from the hardware clock. Whether this occurs or not depends on the hardware platform, the version of the kernel and kernel build options. If this does occur, at this point in the boot sequence, the hardware clock time is assumed to be UTC and the value of {{ic|/sys/class/rtc/rtcN/hctosys}} (N=0,1,2,..) will be set to 1. Later during execution of {{ic|/etc/rc.sysinit}}, the system clock is set again from the hardware clock dependent on the value of HARDWARECLOCK or from systemd dependent on values in {{ic|/etc/adjtime}}. Hence, having the hardware clock using localtime may cause some unexpected behavior during the boot sequence; e.g system time going backwards, which is always a bad idea.
  
or
+
=== UTC in Windows ===
  
HARDWARECLOCK="UTC"
+
Using {{ic|regedit}}, add a {{ic|DWORD}} value with hexadecimal value {{ic|1}} to the registry:
  
During kernel startup, at the point when the RTC driver is loaded, the system clock may be set from the hardware clock. Whether this occurs or not depends on the hardware platform, the version of the kernel and kernel build options. If this does occur, at this point in the boot sequence, the hardware clock time is assumed to be UTC and the value of {{ic|/proc/sys/class/rtcN/hctosys}} (N=0,1,2,..) will be set to 1. Later during execution of {{ic|/etc/rc.sysinit}}, the system clock is set again from the hardware clock dependent on the value of HARDWARECLOCK. Hence, having the hardware clock using localtime may cause some unexpected behavior during the boot sequence; e.g system time going backwards which is always a bad idea.
+
  HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation\RealTimeIsUniversal
  
=== UTC in Windows ===
+
Alternatively, create a {{ic|*.reg}} file (on the desktop) with the following content and double click it to import it into registry:
  
Add the DWORD value:
+
Windows Registry Editor Version 5.00
 +
 +
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation]
 +
      "RealTimeIsUniversal"=dword:00000001
  
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation\RealTimeIsUniversal
+
Windows XP and Windows Vista SP1 have support for setting the time standard as UTC and can be activated in the same way. However, there is a bug after resuming from the suspend/hibernation state that resets the clock to ''localtime''. For these operating systems it is recommended to use ''localtime''.
  
with hexadecimal value 1 to the registry (through regedit). Windows XP and Windows Vista SP1 have support for setting the time standard as {{ic|UTC}} and can be activated in the same way however there is a bug after resuming from the suspend/hibernation state that resets the clock to {{ic|localtime}}.  For these operating systems it is recommended to use {{ic|localtime}}.
+
Should Windows ask to update the clock due to DST changes, let it. It will leave the clock in UTC as expected, only correcting the displayed time.
  
 
The hardware clock and system clock time may need to be [[#Set clock|updated]] after setting this value.
 
The hardware clock and system clock time may need to be [[#Set clock|updated]] after setting this value.
 +
 +
If you are having issues with the offset of the time, try reinstalling {{ic|tzdata}} and then setting your timezone again.
 +
 +
# pacman -S tzdata
 +
# timedatectl set-timezone America/Los_Angeles
 +
 +
It makes sense to [http://www.addictivetips.com/windows-tips/disable-time-synchronization-in-windows-7/ disable] time synchronization in Windows.
  
 
=== Common problems ===
 
=== Common problems ===
  
A common source of problems is that different programs that interact with the real time clock do not agree whether or not it should be in UTC or localtime. This tends to manifest itself in the time being consistently off by the same number of hours as your timezone differs from UTC.
+
A common source of problems is that different programs that interact with the real time clock do not agree whether or not it should be in UTC or local time. This tends to manifest itself in the time being consistently off by the same number of hours as your time zone differs from UTC.
  
This problem can usually be solved by only configuring the real time device in one location, by removing the HARDWARECLOCK line from /etc/rc.conf and instead configuring this value in /etc/adjtime. This is the default configuration location for the hwclock program, and initscripts will use this value if HARDWARECLOCK is not set in rc.conf.
+
This problem can usually be solved by only configuring the real time device in one location, by removing the HARDWARECLOCK line from {{ic|/etc/rc.conf}} and instead configuring this value in {{ic|/etc/adjtime}}. This is the default configuration location for the hwclock program, and initscripts will use this value if HARDWARECLOCK is not set in rc.conf.
  
Once this is configured correctly, make sure that both system time and the real time clock are up-to-date, before the next reboot.
+
Once this is configured correctly, make sure that both system time and the real time clock are up-to-date before the next reboot.
  
 
== Time Zone ==
 
== Time Zone ==
  
Be sure that your time zone is set correctly in {{ic|/etc/rc.conf}}.  This is necessary not only for the localtime to be set correctly but also for other programs you may use.  You can do this by:
+
To check the current zone:
  
  $ grep ^TIMEZONE /etc/rc.conf
+
  $ timedatectl status
  
You can find the time zones listed in {{ic|/usr/share/zoneinfo/}} and then you will need to find a major city that exists to your time zone.  If you live in a specialized time zone area these will be listed in sub-directories.  An example configuration:
+
To list available zones:
  
  TIMEZONE="America/Chicago"
+
  $ timedatectl list-timezones
  
The new time zone will be taken into effect when you reboot.  To change the time zone immediately, you will need to link it to {{ic|/etc/localtime}}:
+
To change your time zone:
  
  # ln -sf ../usr/share/zoneinfo/America/Chicago /etc/localtime
+
  # timedatectl set-timezone <Zone>/<SubZone>
  
When you [[#Set clock|set the hardware clock]] the new time zone will be used; you can check your system's hardware clock within your BIOS.
+
Example:
 +
 
 +
# timedatectl set-timezone Canada/Eastern
  
 
== Time Skew ==
 
== Time Skew ==
  
Every clock has a value that differs from ''real time'' (the best representation of which being [[Wikipedia:International Atomic Time|International Atomic Time]]), no clock is perfect.  A quartz based electronic clock keeps imperfect time, but maintains a consistent inaccuracy. This base 'inaccuracy' is known as 'time skew' or 'time drift'.   
+
Every clock has a value that differs from ''real time'' (the best representation of which being [[Wikipedia:International Atomic Time|International Atomic Time]]); no clock is perfect.  A quartz-based electronic clock keeps imperfect time, but maintains a consistent inaccuracy. This base 'inaccuracy' is known as 'time skew' or 'time drift'.   
 +
 
 +
When the hardware clock is set with {{ic|hwclock}}, a new drift value is calculated in seconds per day. The drift value is calculated by using the difference between the new value set and the hardware clock value just before the set, taking into account the value of the previous drift value and the last time the hardware clock was set. The new drift value and the time when the clock was set is written to the file {{ic|/etc/adjtime}} overwriting the previous values. The hardware clock can therefore be adjusted for drift when the command {{ic|hwclock --adjust}} is run; this also occurs on shutdown but only if the {{ic|hwclock}} daemon is enabled (hence for systems using systemd, this does not happen).
  
When the hardware clock is set with {{ic|hwclock}}, a new drift value is calculated in seconds per day. The drift value is calculated by using the difference between the new value set and the hardware clock value just before the set, taking into account the value of the previous drift value and the last time the hardware clock was set. The new drift value and the time when the clock was set is written to the file {{ic|/etc/adjtime}} overwriting the previous values. The hardware clock can be adjusted for drift when the command {{ic|hwclock --adjust}} is run; this occurs by default on shutdown if the {{ic|hwclock}} daemon is enabled.
+
{{Note|If the hwclock has been set again less than 24 hours after a previous set, the drift is not recalculated as {{ic|hwclock}} considers the elapsed time period too short to accurately calculate the drift.}}
  
{{Note|If the hwclock has been set again less than 24 hours after a previous set, the drift is not recalculated as {{ic|hwclock}} considers the elapsed time period too short to accurately calculate the drift. It may be worth occasionally to stay in Linux so it gets calculated}}
+
If the hardware clock keeps losing or gaining time in large increments, it is possible that an invalid drift has been recorded (but only applicable, if the hwclock daemon is running). This can happen if you have set the hardware clock time incorrectly or your [[#Time Standard|time standard]] is not synchronized with a Windows or Mac OS install.  The drift value can be removed by removing the file {{ic|/etc/adjtime}}, then set the correct hardware clock and system clock time, and check if your [[#Time Standard|time standard]] is correct.
  
If the hardware clock keeps losing or gaining time in large increments, it is possible that an invalid drift has been recorded. This can happen if you have set the hardware clock time incorrectly or your [[#Time Standard|time standard]] is not synchronized with a Windows or Mac OS install.  The drift value can be removed by removing the file {{ic|/etc/adjtime}}, then set the correct hardware clock and system clock time, and check if your [[#Time Standard|time standard]] is correct.
+
{{Note|For those using systemd, but wish to make use of the drift value stored in {{ic|/etc/adjtime}} (i.e. perhaps cannot or dont want to use NTP); they need to call {{ic|hwclock --adjust}} on a regularly basis, perhaps by creating a cron job.}}
  
 
The software clock is very accurate but like most clocks is not perfectly accurate and will drift as well. Though rarely, the system clock can lose accuracy if the kernel skips interrupts. There are some tools to improve software clock accuracy:
 
The software clock is very accurate but like most clocks is not perfectly accurate and will drift as well. Though rarely, the system clock can lose accuracy if the kernel skips interrupts. There are some tools to improve software clock accuracy:
* [[NTP]] can synchronize the software clock of a GNU/Linux system with internet time servers using the Network Time Protocol. NTP can also adjust the interrupt frequency and the number of ticks per second to decrease system clock drift.
+
* [[NTP]] can synchronize the software clock of a GNU/Linux system with internet time servers using the Network Time Protocol. NTP can also adjust the interrupt frequency and the number of ticks per second to decrease system clock drift. Running NTP will also cause the hardware clock to be re-synchronised every 11 minutes.
 
* {{AUR|adjtimex}} in [[Arch User Repository|AUR]] can adjust kernel time variables like interrupt frequency to help improve the system clock time drift.
 
* {{AUR|adjtimex}} in [[Arch User Repository|AUR]] can adjust kernel time variables like interrupt frequency to help improve the system clock time drift.
  

Revision as of 01:53, 19 January 2013

Template:Article summary start Template:Article summary text Template:Article summary heading Template:Article summary wiki Template:Article summary end

In an operating system the time (clock) is determined by four parts: Time value, Time standard, Time Zone, and Daylight Saving Time (DST) if applicable. This article explains what they are and how to read/set them. To maintain accurate system time on a network see Network Time Protocol.

Hardware clock and system clock

A computer has two clocks that need to be considered: the "Hardware clock" and the "System/software clock".

Hardware clock (a.k.a. the Real Time Clock (RTC) or CMOS clock) stores the values of: Year, Month, Day, Hour, Minute, and the Seconds. It does not have the ability to store the time standard (localtime or UTC), nor whether DST is used.

System clock (a.k.a. the software clock) keeps track of: Time, Time Zone, and DST if applicable. It is calculated by the Linux kernel as the number of seconds since midnight January 1st 1970, UTC. The initial value of the system clock is calculated from the hardware clock, dependent on the contents of /etc/adjtime (or for systems still using the old initscripts the value of the HARDWARECLOCK variable defined in /etc/rc.conf). After boot-up has completed the system clock runs independently of the hardware clock. The Linux kernel keeps track of the system clock by counting timer interrupts.

Read clock

To check the current hardware clock time and system clock time respectively (the hardware clock time is presented in localtime even if the hardware clock set to UTC):

$ timedatectl status

Set clock

To set the system clock directly:

# timedatectl set-time "2012-10-30 18:17:16"

RTC clock

Standard behavior of most operating systems is:

  • Set the system clock from the hardware clock on boot
  • Keep accurate time of the system clock with an NTP daemon
  • Set the hardware clock from the system clock on shutdown.

Time standard

There are two time standards: localtime and Coordinated Universal Time (UTC). The localtime standard is dependent on the current time zone, while UTC is the global time standard and is independent of time zone values. Though conceptually different, UTC is also known as GMT (Greenwich Mean Time).

The standard used by hardware clock (CMOS clock, the time that appears in BIOS) is defined by the operating system. By default, Windows uses localtime, Mac OS uses UTC, and UNIX-like operating systems vary. An OS that uses the UTC standard, generally, will consider CMOS (hardware clock) time a UTC time (GMT, Greenwich time) and make an adjustment to it while setting the System time on boot according to your time zone.

When using Linux it is beneficial to have the hardware clock set to the UTC standard and made known to all operating systems. Defining the hardware clock in Linux as UTC means that Daylight Saving Time will automatically be accounted for. If using the localtime standard the system clock will not be changed for DST occurrences assuming that another operating system will take care of the DST switch (and provided no NTP agent is operating).

You can set the hardware clock time standard through the command line. You can check what you have set your Arch Linux install to use by:

$ timedatectl status | grep local

The hardware clock can be queried and set with the hwclock command. To change the hardware clock time standard to localtime use:

# timedatectl set-local-rtc 1

And to set it to UTC use:

# timedatectl set-local-rtc 0

These will generate /etc/adjtime automatically; no further configuration is required.

During kernel startup, at the point when the RTC driver is loaded, the system clock may be set from the hardware clock. Whether this occurs or not depends on the hardware platform, the version of the kernel and kernel build options. If this does occur, at this point in the boot sequence, the hardware clock time is assumed to be UTC and the value of /sys/class/rtc/rtcN/hctosys (N=0,1,2,..) will be set to 1. Later during execution of /etc/rc.sysinit, the system clock is set again from the hardware clock dependent on the value of HARDWARECLOCK or from systemd dependent on values in /etc/adjtime. Hence, having the hardware clock using localtime may cause some unexpected behavior during the boot sequence; e.g system time going backwards, which is always a bad idea.

UTC in Windows

Using regedit, add a DWORD value with hexadecimal value 1 to the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation\RealTimeIsUniversal

Alternatively, create a *.reg file (on the desktop) with the following content and double click it to import it into registry:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation]
     "RealTimeIsUniversal"=dword:00000001

Windows XP and Windows Vista SP1 have support for setting the time standard as UTC and can be activated in the same way. However, there is a bug after resuming from the suspend/hibernation state that resets the clock to localtime. For these operating systems it is recommended to use localtime.

Should Windows ask to update the clock due to DST changes, let it. It will leave the clock in UTC as expected, only correcting the displayed time.

The hardware clock and system clock time may need to be updated after setting this value.

If you are having issues with the offset of the time, try reinstalling tzdata and then setting your timezone again.

# pacman -S tzdata
# timedatectl set-timezone America/Los_Angeles

It makes sense to disable time synchronization in Windows.

Common problems

A common source of problems is that different programs that interact with the real time clock do not agree whether or not it should be in UTC or local time. This tends to manifest itself in the time being consistently off by the same number of hours as your time zone differs from UTC.

This problem can usually be solved by only configuring the real time device in one location, by removing the HARDWARECLOCK line from /etc/rc.conf and instead configuring this value in /etc/adjtime. This is the default configuration location for the hwclock program, and initscripts will use this value if HARDWARECLOCK is not set in rc.conf.

Once this is configured correctly, make sure that both system time and the real time clock are up-to-date before the next reboot.

Time Zone

To check the current zone:

$ timedatectl status

To list available zones:

$ timedatectl list-timezones

To change your time zone:

# timedatectl set-timezone <Zone>/<SubZone>

Example:

# timedatectl set-timezone Canada/Eastern

Time Skew

Every clock has a value that differs from real time (the best representation of which being International Atomic Time); no clock is perfect. A quartz-based electronic clock keeps imperfect time, but maintains a consistent inaccuracy. This base 'inaccuracy' is known as 'time skew' or 'time drift'.

When the hardware clock is set with hwclock, a new drift value is calculated in seconds per day. The drift value is calculated by using the difference between the new value set and the hardware clock value just before the set, taking into account the value of the previous drift value and the last time the hardware clock was set. The new drift value and the time when the clock was set is written to the file /etc/adjtime overwriting the previous values. The hardware clock can therefore be adjusted for drift when the command hwclock --adjust is run; this also occurs on shutdown but only if the hwclock daemon is enabled (hence for systems using systemd, this does not happen).

Note: If the hwclock has been set again less than 24 hours after a previous set, the drift is not recalculated as hwclock considers the elapsed time period too short to accurately calculate the drift.

If the hardware clock keeps losing or gaining time in large increments, it is possible that an invalid drift has been recorded (but only applicable, if the hwclock daemon is running). This can happen if you have set the hardware clock time incorrectly or your time standard is not synchronized with a Windows or Mac OS install. The drift value can be removed by removing the file /etc/adjtime, then set the correct hardware clock and system clock time, and check if your time standard is correct.

Note: For those using systemd, but wish to make use of the drift value stored in /etc/adjtime (i.e. perhaps cannot or dont want to use NTP); they need to call hwclock --adjust on a regularly basis, perhaps by creating a cron job.

The software clock is very accurate but like most clocks is not perfectly accurate and will drift as well. Though rarely, the system clock can lose accuracy if the kernel skips interrupts. There are some tools to improve software clock accuracy:

  • NTP can synchronize the software clock of a GNU/Linux system with internet time servers using the Network Time Protocol. NTP can also adjust the interrupt frequency and the number of ticks per second to decrease system clock drift. Running NTP will also cause the hardware clock to be re-synchronised every 11 minutes.
  • adjtimexAUR in AUR can adjust kernel time variables like interrupt frequency to help improve the system clock time drift.

Resources