Btrfs (Italiano)

From ArchWiki

Tango-emblem-symbolic-link.pngThis article is being considered for redirection to Btrfs.Tango-emblem-symbolic-link.png

Notes: No updates since the creation 2021-04-30. (Discuss in Talk:Btrfs (Italiano))

Tango-preferences-desktop-locale.pngThis article or section needs to be translated.Tango-preferences-desktop-locale.png

Notes: Questo articolo è in fase di traduzione. Seguite per ora le istruzioni della versione inglese. (Discuss in Talk:ArchWiki Translation Team (Italiano)#Pagine Marcate come "out of date" e "Traslateme")

Da Btrfs Wiki:

Btrfs è un moderno filesystem copy on write (CoW) per Linux finalizzato all'implementazione di funzionalità avanzate concentrandosi anche sulla tolleranza ai guasti, sulla riparazione e sulla facile amministrazione. Sviluppato congiuntamente da più aziende, Btrfs è concesso in licenza con licenza GPL e aperto al contributo di chiunque.
Attenzione: Btrfs presenta ancora features ritenute instabili. Vedi la Btrfs Wiki's Status, Is Btrfs stable? e Getting started per altre informazioni dettagliate. Vedi la sezione#Known issues.


Installa il btrfs-progs, pacchetto richiesto per il suo utilizzo.

Se la partizione di boot, quindi initramfs e kernel, risiede dentro btrfs, verifica che il boot loader supporti l'avvio da Btrfs.

Creazione file system

Di seguito viene mostrato come creare un nuovo Btrfs file system. Per convertire una partizione ext3/4 in Btrfs, vedere #Ext3/4 to Btrfs conversion. Per usare un setup partitionless, vedere #Partitionless Btrfs disk.

Leggere mkfs.btrfs(8) per altre informazioni.

File system in una singola partizione

Per creare un filesystem Btrfs su una singola partizione /dev/partition:

# mkfs.btrfs -L mylabel /dev/partition

The Btrfs default nodesize for metadata is 16KB, while the default sectorsize for data is equal to page size and autodetected. To use a larger nodesize for metadata (must be a multiple of sectorsize, up to 64KB is allowed), specify a value for the nodesize via the -n switch as shown in this example using 32KB blocks:

# mkfs.btrfs -L mylabel -n 32k /dev/partition
Nota: According to mkfs.btrfs(8) § OPTIONS, "[a] smaller node size increases fragmentation but leads to taller b-trees which in turn leads to lower locking contention. Higher node sizes give better packing and less fragmentation at the cost of more expensive memory operations while updating the metadata blocks".

Multi-device file system

Attenzione: The RAID 5 and RAID 6 modes of Btrfs are fatally flawed, and should not be used for "anything but testing with throw-away data." List of known problems and partial workarounds. See the Btrfs page on RAID5 and RAID6 for status updates (seems to not be updated).

Multiple devices can be used to create a RAID. Supported RAID levels include RAID 0, RAID 1, RAID 10, RAID 5 and RAID 6. Starting from kernel 5.5 RAID1c3 and RAID1c4 for 3- and 4- copies of RAID 1 level. The RAID levels can be configured separately for data and metadata using the -d and -m options respectively. By default the data has one copy (single) and the metadata is mirrored (raid1). This is similar to creating a JBOD configuration, where disks are seen as one filesystem, but files are not duplicated. See Using Btrfs with Multiple Devices for more information about how to create a Btrfs RAID volume.

# mkfs.btrfs -d single -m raid1 /dev/part1 /dev/part2 ...

You must include either the udev hook or the btrfs hook in /etc/mkinitcpio.conf in order to use multiple Btrfs devices in a pool. See the Mkinitcpio#Common hooks article for more information.

  • It is possible to add devices to a multiple-device filesystem later on. See the Btrfs wiki article for more information.
  • Devices can be of different sizes. However, if one drive in a RAID configuration is bigger than the others, this extra space will not be used.
  • Some boot loaders such as Syslinux do not support multi-device file systems.
  • Btrfs does not automatically read from the fastest device, so mixing different kinds of disks results in inconsistent performance. See this Stack Overflow answer for details.

See #RAID for advice on maintenance specific to multi-device Btrfs file systems.

Configuring the file system

Copy-on-Write (CoW)

By default, Btrfs uses copy-on-write for all files all the time. See the Btrfs Sysadmin Guide section for implementation details, as well as advantages and disadvantages.

Disabling CoW

To disable copy-on-write for newly created files in a mounted subvolume, use the nodatacow mount option. This will only affect newly created files. Copy-on-write will still happen for existing files. The nodatacow option also disables compression. See btrfs(5) for details.

Nota: From btrfs(5) § MOUNT OPTIONS: "within a single file system, it is not possible to mount some subvolumes with nodatacow and others with datacow. The mount option of the first mounted subvolume applies to any other subvolumes."

To disable copy-on-write for single files/directories do:

$ chattr +C /dir/file

This will disable copy-on-write for those operation in which there is only one reference to the file. If there is more than one reference (e.g. through cp --reflink=always or because of a filesystem snapshot), copy-on-write still occurs.

Nota: From chattr man page: "For btrfs, the 'C' flag should be set on new or empty files. If it is set on a file which already has data blocks, it is undefined when the blocks assigned to the file will be fully stable. If the 'C' flag is set on a directory, it will have no effect on the directory, but new files created in that directory will have the No_COW attribute."
Suggerimento: In accordance with the note above, you can use the following trick to disable copy-on-write on existing files in a directory:
$ mv /path/to/dir /path/to/dir_old
$ mkdir /path/to/dir
$ chattr +C /path/to/dir
$ cp -a /path/to/dir_old/* /path/to/dir
$ rm -rf /path/to/dir_old

Make sure that the data are not used during this process. Also note that mv or cp --reflink as described below will not work.

Creating lightweight copies

By default, when copying files on a Btrfs filesystem with cp, actual copies are created. To create a lightweight copy referencing to the original data, use the reflink option:

$ cp --reflink source dest 

See the man page on cp(1) for more details on the --reflink flag.


Btrfs supports transparent and automatic compression. This reduces the size of files as well as significantly increases the lifespan of flash-based media by reducing write amplification. [1][2][3] It can also improve performance, in some cases (e.g. single thread with heavy file I/O), while obviously harming performance in other cases (e.g. multi-threaded and/or CPU intensive tasks with large file I/O). Better performance is generally achieved with the fastest compress algorithms, zstd and lzo, and some benchmarks provide detailed comparisons.

The compress=alg mount option enables automatically considering every file for compression, where alg is either zlib, lzo, zstd, or no (for no compression). Using this option, btrfs will check if compressing the first portion of the data shrinks it. If it does, the entire write to that file will be compressed. If it does not, none of it is compressed. With this option, if the first portion of the write does not shrink, no compression will be applied to the write even if the rest of the data would shrink tremendously. [4] This is done to prevent making the disk wait to start writing until all of the data to be written is fully given to btrfs and compressed.

The compress-force=alg mount option can be used instead, which makes btrfs skip checking if compression shrinks the first portion, and enables automatic compression try for every file. In a worst-case scenario, this can cause (slightly) more CPU usage for no purpose. However, empirical testing on multiple mixed-use systems showed a significant improvement of about 10% disk compression from using compress-force=zstd over just compress=zstd, which also had 10% disk compression.

Only files created or modified after the mount option is added will be compressed.

To apply compression to existing files, use the btrfs filesystem defragment -calg command, where alg is either zlib, lzo or zstd. For example, in order to re-compress the whole file system with zstd, run the following command:

# btrfs filesystem defragment -r -v -czstd /

To enable compression when installing Arch to an empty Btrfs partition, use the compress option when mounting the file system: mount -o compress=zstd /dev/sdxY /mnt/. During configuration, add compress=zstd to the mount options of the root file system in fstab.

Suggerimento: Compression can also be enabled per-file without using the compress mount option; to do so apply chattr +c to the file. When applied to directories, it will cause new files to be automatically compressed as they come.
  • Systems using older kernels or btrfs-progs without zstd support may be unable to read or repair your filesystem if you use this option.
  • GRUB introduced zstd support in 2.04. Make sure you have actually upgraded the bootloader installed in your MBR/ESP since then, by running grub-install with the appropriate options for your BIOS/UEFI setup, since that is not done automatically. See FS#63235.

View compression types and ratios

compsize takes a list of files (or an entire btrfs filesystem) and measures compression types used and effective compression ratios. Uncompressed size may not match the number given by other programs such as du, because every extent is counted once, even if it is reflinked several times, and even if part of it is no longer used anywhere but has not been garbage collected. The -x option keeps it on a single filesystem, which is useful in situations like compsize -x / to avoid it from attempting to look in non-btrfs subdirectories and fail the entire run.


Merge-arrows-2.pngThis article or section is a candidate for merging with User:I2Oc9/Btrfs_subvolumes.Merge-arrows-2.png

Notes: A more straightforward introduction (Discuss in Talk:Btrfs (Italiano))

"A btrfs subvolume is not a block device (and cannot be treated as one) instead, a btrfs subvolume can be thought of as a POSIX file namespace. This namespace can be accessed via the top-level subvolume of the filesystem, or it can be mounted in its own right." [5]

Each Btrfs file system has a top-level subvolume with ID 5. It can be mounted as / (by default), or another subvolume can be mounted instead. Subvolumes can be moved around in the filesystem and are rather identified by their id than their path.

See the following links for more details:

Creating a subvolume

To create a subvolume:

# btrfs subvolume create /path/to/subvolume

Listing subvolumes

To see a list of current subvolumes and their ids under path:

# btrfs subvolume list -p path

Deleting a subvolume

To delete a subvolume:

# btrfs subvolume delete /path/to/subvolume

Since Linux 4.18, one can also delete a subvolume like a regular directory (rm -r, rmdir).

Mounting subvolumes

Subvolumes can be mounted like file system partitions using the subvol=/path/to/subvolume or subvolid=objectid mount flags. For example, you could have a subvolume named subvol_root and mount it as /. One can mimic traditional file system partitions by creating various subvolumes under the top level of the file system and then mounting them at the appropriate mount points. Thus one can easily restore a file system (or part of it) to a previous state using #Snapshots.

Suggerimento: Changing subvolume layouts is made simpler by not using the toplevel subvolume (ID=5) as / (which is done by default). Instead, consider creating a subvolume to house your actual data and mounting it as /.
Nota: From btrfs(5) § MOUNT OPTIONS: "Most mount options apply to the whole filesystem, and only the options for the first subvolume to be mounted will take effect. This is due to lack of implementation and may change in the future.". See the Btrfs Wiki FAQ for which mount options can be used per subvolume.

See Snapper#Suggested filesystem layout, Btrfs SysadminGuide#Managing Snapshots, and Btrfs SysadminGuide#Layout for example file system layouts using subvolumes.

See btrfs(5) for a full list of btrfs-specific mount options.

Mounting subvolume as root

To use a subvolume as the root mountpoint specify the subvolume via a kernel parameter using rootflags=subvol=/path/to/subvolume. Edit the root mountpoint in /etc/fstab and specify the mount option subvol=. Alternatively the subvolume can be specified with its id, rootflags=subvolid=objectid as kernel parameter and subvolid=objectid as mount option in /etc/fstab.

Changing the default sub-volume

The default sub-volume is mounted if no subvol= mount option is provided. To change the default subvolume, do:

# btrfs subvolume set-default subvolume-id /

where subvolume-id can be found by listing.

Nota: After changing the default subvolume on a system with GRUB, you should run grub-install again to notify the bootloader of the changes. See this forum thread.

Changing the default subvolume with btrfs subvolume set-default will make the top level of the filesystem inaccessible, except by use of the subvol=/ or subvolid=5 mount options [6].


Attenzione: Qgroup is not stable yet and combining quota with (too many) snapshots of subvolumes can cause performance problems, for example when deleting snapshots. Plus there are several more known issues.

Quota support in Btrfs is implemented at a subvolume level by the use of quota groups or qgroup: Each subvolume is assigned a quota groups in the form of 0/subvolume_id by default. However it is possible to create a quota group using any number if desired.

To use qgroups you need to enable quota first using

# btrfs quota enable path

From this point onwards newly created subvolumes will be controlled by those groups. In order to retrospectively enable them for already existing subvolumes, enable quota normally, then create a qgroup (quota group) for each of those subvolume using their subvolume_id and rescan them:

# btrfs subvolume list path | cut -d' ' -f2 | xargs -I{} -n1 btrfs qgroup create 0/{} path
# btrfs quota rescan path

Quota groups in Btrfs form a tree hierarchy, whereby qgroups are attached to subvolumes. The size limits are set per qgroup and apply when any limit is reached in tree that contains a given subvolume.

Limits on quota groups can be applied either to the total data usage, un-shared data usage, compressed data usage or both. File copy and file deletion may both affect limits since the unshared limit of another qgroup can change if the original volume's files are deleted and only one copy is remaining. For example a fresh snapshot shares almost all the blocks with the original subvolume, new writes to either subvolume will raise towards the exclusive limit, deletions of common data in one volume raises towards the exclusive limit in the other one.

To apply a limit to a qgroup, use the command btrfs qgroup limit. Depending on your usage either use a total limit, unshared limit (-e) or compressed limit (-c). To show usage and limits for a given path within a filesystem use

# btrfs qgroup show -reF path

Commit interval

The resolution at which data are written to the filesystem is dictated by Btrfs itself and by system-wide settings. Btrfs defaults to a 30 seconds checkpoint interval in which new data are committed to the filesystem. This can be changed by appending the commit mount option in /etc/fstab for the btrfs partition.

LABEL=arch64 / btrfs defaults,compress=zstd,commit=120 0 0

System-wide settings also affect commit intervals. They include the files under /proc/sys/vm/* and are out-of-scope of this wiki article. The kernel documentation for them resides in Documentation/sysctl/vm.txt.


A Btrfs filesystem is able to free unused blocks from an SSD drive supporting the TRIM command. Starting with kernel version 5.6 there is asynchronous discard support, enabled with mount option discard=async. Freed extents are not discarded immediately, but grouped together and trimmed later by a separate worker thread, improving commit latency.

More information about enabling and using TRIM can be found in Solid State Drives#TRIM.


Swap file

Swap files in Btrfs are supported since Linux kernel 5.0.[7] The proper way to initialize a swap file is to first create a non-compressed, non-snapshotted subvolume to host the file, cd into its directory, then create a zero length file, set the No_COW attribute on it with chattr, and make sure compression is disabled:

# cd /path/to/swapfile
# truncate -s 0 ./swapfile
# chattr +C ./swapfile
# btrfs property set ./swapfile compression none

Continue with the steps in Swap file#Swap file creation. Configuring hibernation to a swap file is described in Power management/Suspend and hibernate#Hibernation into swap file.

Nota: Since Linux kernel 5.0, Btrfs has native swap file support with some limitations:

Displaying used/free space

General linux userspace tools such as df will inaccurately report free space on a Btrfs partition. It is recommended to use btrfs filesystem usage to query Btrfs partitions. For example:

# btrfs filesystem usage /
Nota: The btrfs filesystem usage command does not currently work correctly with RAID5/RAID6 RAID levels.

See [8] for more information.


Btrfs supports online defragmentation through the mount option autodefrag, see btrfs(5) § MOUNT OPTIONS. To manually defragment your root, use:

# btrfs filesystem defragment -r /

Using the above command without the -r switch will result in only the metadata held by the subvolume containing the directory being defragmented. This allows for single file defragmentation by simply specifying the path.

Defragmenting a file which has a COW copy (either a snapshot copy or one made with cp --reflink or bcp) plus using the -c switch with a compression algorithm may result in two unrelated files effectively increasing the disk usage.


Btrfs offers native "RAID" for #Multi-device file systems. Notable features which set btrfs RAID apart from mdadm are self-healing redundant arrays and online balancing. See the Btrfs wiki page for more information. The Btrfs sysadmin page also has a section with some more technical background.

Attenzione: Parity RAID (RAID 5/6) code has multiple serious data-loss bugs in it. See the Btrfs Wiki's RAID5/6 page and a bug report on linux-btrfs mailing list for more detailed information. In June 2020, somebody posted a comprehensive list of current issues and a helpful recovery guide.


Tango-view-fullscreen.pngThis article or section needs expansion.Tango-view-fullscreen.png

The Btrfs Wiki Glossary[link interrotto 2023-04-22] says that Btrfs scrub is "[a]n online filesystem checking tool. Reads all the data and metadata on the filesystem, and uses checksums and the duplicate copies from RAID storage to identify and repair any corrupt data."

Nota: A running scrub process will prevent the system from suspending, see this thread for details.

Start manually

To start a (background) scrub on the filesystem which contains /:

# btrfs scrub start /

To check the status of a running scrub:

# btrfs scrub status /

Start with a service or timer

The btrfs-progs package brings the btrfs-scrub@.timer unit for monthly scrubbing the specified mountpoint. Enable the timer with an escaped path, e.g. btrfs-scrub@-.timer for / and btrfs-scrub@home.timer for /home. You can use systemd-escape -p /path/to/mountpoint to escape the path, see systemd-escape(1) for details.

You can also run the scrub by starting btrfs-scrub@.service (with the same encoded path). The advantage of this over btrfs scrub (as the root user) is that the results of the scrub will be logged in the systemd journal.

On large NVMe drives with insufficient cooling (e.g. in a laptop), scrubbing can read the drive fast enough and long enough to get it very hot. If you are running scrubs with systemd, you can easily limit the rate of scrubbing with the IOReadBandwidthMax option described in systemd.resource-control(5) by using a drop-in file.


"A balance passes all data in the filesystem through the allocator again. It is primarily intended to rebalance the data in the filesystem across the devices when a device is added or removed. A balance will regenerate missing copies for the redundant RAID levels, if a device has failed." [9][link interrotto 2023-04-22] See Upstream FAQ page.

On a single-device filesystem a balance may be also useful for (temporarily) reducing the amount of allocated but unused (meta)data chunks. Sometimes this is needed for fixing "filesystem full" issues.

# btrfs balance start /
# btrfs balance status /


"A snapshot is simply a subvolume that shares its data (and metadata) with some other subvolume, using btrfs's COW capabilities." See Btrfs Wiki SysadminGuide#Snapshots for details.

To create a snapshot:

# btrfs subvolume snapshot source [dest/]name

To create a readonly snapshot add the -r flag. To create writable version of a readonly snapshot, simply create a snapshot of it.

Nota: Snapshots are not recursive. Every nested subvolume will be an empty directory inside the snapshot.


A subvolume can be sent to stdout or a file using the send command. This is usually most useful when piped to a Btrfs receive command. For example, to send a snapshot named /root_backup (perhaps of a snapshot you made of / earlier) to /backup you would do the following:

# btrfs send /root_backup | btrfs receive /backup

The snapshot that is sent must be readonly. The above command is useful for copying a subvolume to an external device (e.g. a USB disk mounted at /backup above).

You can also send only the difference between two snapshots. For example, if you have already sent a copy of root_backup above and have made a new readonly snapshot on your system named root_backup_new, then to send only the incremental difference to /backup do:

# btrfs send -p /root_backup /root_backup_new | btrfs receive /backup

Now a new subvolume named root_backup_new will be present in /backup.

See Btrfs Wiki's Incremental Backup page on how to use this for incremental backups and for tools that automate the process.


Using copy-on-write, Btrfs is able to copy files or whole subvolumes without actually copying the data. However whenever a file is altered a new proper copy is created. Deduplication takes this a step further, by actively identifying blocks of data which share common sequences and combining them into an extent with the same copy-on-write semantics.

Tools dedicated to deduplicate a Btrfs formatted partition include duperemove, bedupAUR and btrfs-dedup. One may also want to merely deduplicate data on a file based level instead using e.g. rmlint, jdupesAUR or dduper-gitAUR. For an overview of available features of those programs and additional information have a look at the upstream Wiki entry.

Furthermore Btrfs developers are working on inband (also known as synchronous or inline) deduplication, meaning deduplication done when writing new data to the filesystem. Currently it is still an experiment which is developed out-of-tree. Users willing to test the new feature should read the appropriate kernel wiki page.

Known issues

A few limitations should be known before trying.


Btrfs has no built-in encryption support, but this may come in the future. Users can encrypt the partition before running mkfs.btrfs. See dm-crypt/Encrypting an entire system#Btrfs subvolumes with swap.

Existing Btrfs file systems can use something like EncFS or TrueCrypt, though perhaps without some of Btrfs' features.

btrfs check issues

The tool btrfs check has known issues and should not be run without further reading, see section #btrfs check.

Tips and tricks

Partitionless Btrfs disk

  • Most users do not want this type of setup and instead should install Btrfs on a regular partition. Furthermore, GRUB strongly discourages installation to a partitionless disk.
  • Since grub 2.04, GRUB's core.img is too big to fit in Btrfs VBR. See FS#63656.

Btrfs can occupy an entire data storage device, replacing the MBR or GPT partitioning schemes, using subvolumes to simulate partitions. However, using a partitionless setup is not required to simply create a Btrfs filesystem on an existing partition that was created using another method. There are some limitations to partitionless single disk setups:

  • Cannot place other file systems on another partition on the same disk.
  • If using a Linux kernel version before 5.0, you cannot use swap area as Btrfs did not support swap files pre-5.0 and there is no place to create swap partition
  • Cannot use UEFI to boot.

To overwrite the existing partition table with Btrfs, run the following command:

# mkfs.btrfs /dev/sdX

For example, use /dev/sda rather than /dev/sda1. The latter would format an existing partition instead of replacing the entire partitioning scheme. Because the root partition is Btrfs, make sure btrfs is compiled into the kernel, or put btrfs into mkinitcpio.conf#MODULES and regenerate the initramfs.

Install the boot loader like you would for a data storage device with a Master Boot Record. See Syslinux#Manual install or GRUB/Tips and tricks#Install to partition or partitionless disk. If your kernel does not boot due to Failed to mount /sysroot., please add GRUB_PRELOAD_MODULES="btrfs" in /etc/default/grub and generate the grub configuration (GRUB#Generate the main configuration file).

Ext3/4 to Btrfs conversion

Attenzione: There are many reports on the btrfs mailing list about incomplete/corrupt/broken conversions. Make sure you have working backups of any data you cannot afford to lose. See Conversion from Ext3 on the btrfs wiki for more information.
Attenzione: There is a bug in btrfs-progs 5.6.1 and before, that will yield a btrfs filesystem with wrong size for the last block group, thus preventing to mount the newly converted btrfs. This bug is fixed in btrfs-progs 5.7 in this commit. Please use btrfs-convert from btrfs-progs 5.7-1 and above.

Boot from an install CD, then convert by doing:

# btrfs-convert /dev/partition

Mount the partion and test the conversion by checking the files. Be sure to change the /etc/fstab to reflect the change (type to btrfs and fs_passno [the last field] to 0 as Btrfs does not do a file system check on boot). Also note that the UUID of the partition will have changed, so update fstab accordingly when using UUIDs. chroot into the system and rebuild the GRUB menu list (see Install from existing Linux and GRUB articles). If converting a root filesystem, while still chrooted run mkinitcpio -p linux to regenerate the initramfs or the system will not successfully boot. If you get stuck in grub with 'unknown filesystem' try reinstalling grub with grub-install /dev/partition and regenerate the config as well grub-mkconfig -o /boot/grub/grub.cfg.

Nota: If there is anything wrong, either unable to mount or write files to the newly converted btrfs, there is always the option to rollback as long as the backup subvolume /ext2_saved is still there. Use btrfs-convert -r /dev/partition command to rollback, this will discard any modifications to the newly converted btrfs filesystem.

After confirming that there are no problems, complete the conversion by deleting the backup ext2_saved sub-volume. Note that you cannot revert back to ext3/4 without it.

# btrfs subvolume delete /ext2_saved

Finally balance the file system to reclaim the space.

Remember that some applications which were installed prior have to be adapted to Btrfs.

Checksum hardware acceleration

Tango-inaccurate.pngThe factual accuracy of this article or section is disputed.Tango-inaccurate.png

Reason: According to [10], the CRC algorithm printed by the following command simply matches "whatever crypto library is currently loaded at the time", and "can change arbitrarily while the file system is loaded". So this method should not be relied upon in order to determine which CRC algorithm Btrfs is currently using. (Discuss in Talk:Btrfs (Italiano))

CRC32 is a new instruction in Intel SSE4.2. To verify if Btrfs checksum is hardware accelerated:

# dmesg | grep crc32c
Btrfs loaded, crc32c=crc32c-intel

If you see crc32c=crc32c-generic, it is probably because your root partition is Btrfs, and you will have to compile crc32c-intel into the kernel to make it work. Putting crc32c-intel into mkinitcpio.conf does not work.

Corruption recovery

Attenzione: The tool btrfs check has known issues, see section #btrfs check

btrfs-check cannot be used on a mounted file system. To be able to use btrfs-check without booting from a live USB, add it to the initial ramdisk:


Regenerate the initramfs.

Then if there is a problem booting, the utility is available for repair.

Nota: If the fsck process has to invalidate the space cache (and/or other caches?) then it is normal for a subsequent boot to hang up for a while (it may give console messages about btrfs-transaction being hung). The system should recover from this after a while.

See the Btrfs Wiki page for more information.

Booting into snapshots

In order to boot into a snapshot, the same procedure applies as for mounting a subvolume as your root partition, as given in section mounting a subvolume as your root partition, because snapshots can be mounted like subvolumes.

  • If using GRUB you can automatically populate your boot menu with btrfs snapshots when regenerating the configuration file with the help of grub-btrfs or grub-btrfs-gitAUR.
  • If using rEFInd you can automatically populate your boot menu with btrfs snapshots with the help of refind-btrfsAUR, after enabling refind-btrfs.service.

Use Btrfs subvolumes with systemd-nspawn

See the Systemd-nspawn#Use Btrfs subvolume as container root and Systemd-nspawn#Use temporary Btrfs snapshot of container articles.

Reducing access time metadata updates

Because of the copy-on-write nature of Btrfs simply accessing files can trigger the metadata copy and writing. Reducing the frequency of access time updates may eliminate this unexpected disk usage and increase performance. See fstab#atime options for the available options.


See the Btrfs Problem FAQ for general troubleshooting.


Partition offset

The offset problem may happen when you try to embed core.img into a partitioned disk. It means that it is OK to embed GRUB's core.img into a Btrfs pool on a partitionless disk (e.g. /dev/sdX) directly.

GRUB can boot Btrfs partitions, however the module may be larger than other file systems. And the core.img file made by grub-install may not fit in the first 63 sectors (31.5KiB) of the drive between the MBR and the first partition. Up-to-date partitioning tools such as fdisk and gdisk avoid this issue by offsetting the first partition by roughly 1MiB or 2MiB.

Missing root

Tango-inaccurate.pngThe factual accuracy of this article or section is disputed.Tango-inaccurate.png

Reason: Suggests editing a non-configuration file manually. (Discuss in Talk:Btrfs#Should not suggest to edit files in /usr/share)

Users experiencing the following: error no such device: root when booting from a RAID style setup then edit /usr/share/grub/grub-mkconfig_lib and remove both quotes from the line echo " search --no-floppy --fs-uuid --set=root ${hints} ${fs_uuid}". Regenerate the config for grub and the system should boot without an error.

Mounting timed out

Sometimes, especially with large RAID1 arrays, mounting might time out during boot with a journal message such as:

Jan 25 18:05:12 host systemd[1]: storage.mount: Mounting timed out. Terminating.
Jan 25 18:05:46 host systemd[1]: storage.mount: Mount process exited, code=killed, status=15/TERM
Jan 25 18:05:46 host systemd[1]: storage.mount: Failed with result 'timeout'.
Jan 25 18:05:46 host systemd[1]: Failed to mount /storage.
Jan 25 18:05:46 host systemd[1]: Startup finished in 32.943s (firmware) + 3.097s (loader) + 7.247s (kernel)>
Jan 25 18:05:46 host kernel: BTRFS error (device sda): open_ctree failed

This can easily be worked around by providing a longer timeout via the systemd-specific mount option x-systemd.mount-timeout in fstab. For example:

/dev/sda                /storage    btrfs       rw,relatime,x-systemd.mount-timeout=5min  0 0

BTRFS: open_ctree failed

As of November 2014 there seems to be a bug in systemd or mkinitcpio causing the following error on systems with multi-device Btrfs filesystem using the btrfs hook in mkinitcpio.conf:

BTRFS: open_ctree failed
mount: wrong fs type, bad option, bad superblock on /dev/sdb2, missing codepage or helper program, or other error

In some cases useful info is found in syslog - try dmesg|tail or so.

You are now being dropped into an emergency shell.

A workaround is to remove btrfs from the HOOKS array in /etc/mkinitcpio.conf and instead add btrfs to the MODULES array. Then regenerate the initramfs and reboot.

You will get the same error if you try to mount a raid array without one of the devices. In that case you must add the degraded mount option to /etc/fstab. If your root resides on the array, you must also add rootflags=degraded to your kernel parameters.

As of August 2016, a potential workaround for this bug is to mount the array by a single drive only in /etc/fstab, and allow btrfs to discover and append the other drives automatically. Group-based identifiers such as UUID and LABEL appear to contribute to the failure. For example, a two-device RAID1 array consisting of 'disk1' and disk2' will have a UUID allocated to it, but instead of using the UUID, use only /dev/mapper/disk1 in /etc/fstab. For a more detailed explanation, see the following blog post.

Another possible workaround is to remove the udev hook in mkinitcpio.conf and replace it with the systemd hook. In this case, btrfs should not be in the HOOKS or MODULES arrays.

See the original forums thread and FS#42884 for further information and discussion.

btrfs check

Attenzione: Since Btrfs is under heavy development, especially the btrfs check command, it is highly recommended to create a backup and consult the Btrfsck documentation before executing btrfs check with the --repair switch.

The btrfs check command can be used to check or repair an unmounted Btrfs filesystem. However, this repair tool is still immature and not able to repair certain filesystem errors even those that do not render the filesystem unmountable.

See also