From ArchWiki
Jump to: navigation, search

rEFInd is a UEFI boot manager. It is a fork of the no-longer-maintained rEFIt and fixes many issues with respect to non-Mac UEFI booting. It is designed to be platform-neutral and to simplify booting multiple OSes.

Note: In the entire article esp denotes the mountpoint of the EFI System Partition aka ESP.


Install refind-efi from the Official repositories.

Warning: Your kernel and initramfs need to reside on a file system which rEFInd can read.

rEFInd has read-only drivers for ReiserFS, Ext2, Ext4, Btrfs, ISO-9660, HFS+, and NTFS. Additionally rEFInd can use drivers from the UEFI firmware i.e. FAT (or HFS+ on Macs or ISO-9660 on some systems).

To find additional drivers see The rEFInd Boot Manager: Using EFI Drivers: Finding Additional EFI Drivers.

Scripted installation

The rEFInd package includes the /usr/bin/refind-install script to simplify the process of setting rEFInd as your default EFI boot entry. The script has several options for handling differing setups and UEFI implementations, but for many systems it should be sufficient to simply run

# refind-install

This will attempt to find and mount your ESP, copy rEFInd's files to /EFI/refind/ on the ESP, and use efibootmgr to make rEFInd the default EFI boot application.

Alternatively you can install rEFInd to the default/fallback boot path /EFI/BOOT/BOOT*.EFI. This is helpful for bootable USB flash drives or on systems that have issues with the NVRAM changes made by efibootmgr:

# refind-install --usedefault /dev/sdXY

Where /dev/sdXY is the partition of your ESP.

You can read the comments in the install script for explanations of the various installation options.

Note: By default refind-install installs only the driver for the file system on which kernel resides. Additional file systems need to be installed manually or you can install all drivers with the --alldrivers option. This is useful for bootable USB flash drives e.g.
# refind-install --usedefault /dev/sdXY --alldrivers

After installing rEFInd's files to the ESP, verify that rEFInd has created refind_linux.conf containing the required kernel parameters (e.g. root=) in the same directory as your kernel. If it has not created this file, you will need to set up #Passing kernel parameters manually or you will most likely get a kernel panic on your next boot.

By default, rEFInd will scan all of your drives (that it has drivers for) and add a boot entry for each EFI bootloader it finds, which should include your kernel (since Arch enables EFISTUB by default). So you may have a bootable system at this point.

Tip: It is always a good idea to edit the default config /EFI/refind/refind.conf on the ESP to ensure that the default options work for you.

Secure Boot

Follow Secure Boot#Using your own keys to create keys.

Create directory /etc/refind.d/keys and place Signature Database (db) key and certificates in it. Name the files: refind_local.key, refind_local.crt and refind_local.cer.

When running install script add option --localkeys, e.g.:

# refind-install --localkeys

rEFInd EFI binary will be signed with supplied key and certificate.

Manual installation

Tip: rEFInd can boot Linux in many ways. See The rEFInd Boot Manager: Methods of Booting Linux for coverage of the various approaches.
Note: For 32-bit EFI, replace x64 with ia32 in the commands below.

If the refind-install script does not work for you, rEFInd can be set up manually.

First, copy the executable to the ESP:

# cp /usr/share/refind/refind_x64.efi esp/EFI/refind/

Then use efibootmgr to create a boot entry in the UEFI NVRAM, where /dev/sdX and Y are the device and partition number of your ESP. If you are installing rEFInd to the default UEFI path /EFI/BOOT/BOOTX64.EFI, you can probably skip this step.

# efibootmgr --create --disk /dev/sdX --part Y --loader /EFI/refind/refind_x64.efi --label "rEFInd Boot Manager"

At this point, you should be able to reboot into rEFInd but it will not be able to boot your kernel. If your kernel does not reside on your ESP, rEFInd can mount your partitions to find it - provided it has the right drivers.

rEFInd automatically loads all drivers from the subdirectories drivers and drivers_arch (e.g. drivers_x64) in its install directory.

# mkdir esp/EFI/refind/drivers_x64
# cp /usr/share/refind/drivers_x64/drivername_x64.efi esp/EFI/refind/drivers_x64/

Now rEFInd should have a boot entry for your kernel, but it will not pass the correct kernel parameters. Set up #Passing kernel parameters. You should now be able to boot your kernel using rEFInd. If you are still unable to boot or if you want to tweak rEFInd's settings, many options can be changed with a config file:

# cp /usr/share/refind/refind.conf-sample esp/EFI/refind/refind.conf

The sample config is well commented and self-explanatory.

Unless you have set textonly in the config file, you should copy rEFInd's icons to get rid of the ugly placeholders:

# cp -r /usr/share/refind/icons esp/EFI/refind/

You can try out different fonts by copying them and changing the font setting in refind.conf:

# cp -r /usr/share/refind/fonts esp/EFI/refind/
Tip: Pressing F10 in rEFInd will save a screenshot to the top level directory of the ESP.


Pacman updates the rEFInd files in /usr/share/refind and will not copy new files to the ESP for you. If refind-install worked for your original installation of rEFInd, you can rerun it to copy the updated files. The new config file will be copied as refind.conf-sample so that you can integrate changes into your config file using a diff tool. If your rEFInd required #Manual installation, you will need to figure out which files to copy yourself.

Pacman hook

You can automate the update process using a hook:



Where the Exec= may need to be changed to the correct update command for your setup. If you did #Manual configuration, you could create your own update script to call with the hook.


The rEFInd configuration refind.conf is located in the same directory as the rEFInd EFI application (usually esp/EFI/refind or esp/EFI/BOOT). The default config contains extensive comments explaining all its options.

Passing kernel parameters

There are two methods for setting the kernel parameters that rEFInd will pass to the kernel.

For kernels automatically detected by rEFInd

If rEFInd automatically detects your kernel, you can place a refind_linux.conf file containing the kernel parameters in the same directory as your kernel. You can use /usr/share/refind/refind_linux.conf-sample as a starting point. The first uncommented line of refind_linux.conf will be the default parameters for the kernel. Subsequent lines will create entries in a submenu accessible using +, F2, or Insert.

"Boot using default options"     "root=PARTUUID=XXXXXXXX rw add_efi_memmap"
"Boot to terminal"               "root=PARTUUID=XXXXXXXX rw add_efi_memmap"
"Boot using fallback initramfs"  "root=PARTUUID=XXXXXXXX rw add_efi_memmap initrd=initramfs-linux-fallback.img"

Alternatively, try running:

# refind-mkrlconf

Which will attempt to find your kernel in /boot and automatically generate refind_linux.conf. The script will only set up the most basic kernel parameters, so be sure to check the file it created for correctness.

If you do not specify an initrd= parameter, rEFInd will automatically add it by searching for common RAM disk filenames in the same directory as the kernel. If you need multiple initrd= parameters (e.g. for Microcode) you must specify them manually in refind_linux.conf.

Manual boot stanzas

If your kernel is not autodetected, or if you simply want more control over the options for a menu entry, you can manually create boot entries using stanzas in refind.conf. Ensure that scanfor includes manual or these entries will not appear in rEFInd's menu. Kernel parameters are set with the options keyword. rEFInd will append the initrd= parameter using the file specified by the initrd keyword in the stanza. If you need additional initrds (e.g. for Microcode), you can specify them in options (and the one specified by the initrd keyword will be added to the end).


menuentry "Arch Linux" {
	icon     /EFI/refind/icons/os_arch.png
	volume   "Arch Linux"
	loader   /boot/vmlinuz-linux
	initrd   /boot/initramfs-linux.img
	options  "root=PARTUUID=XXXXXXXX rw add_efi_memmap"
	submenuentry "Boot using fallback initramfs" {
		initrd /boot/initramfs-linux-fallback.img
	submenuentry "Boot to terminal" {
		add_options ""

It is likely that you will need to change volume to match either a filesystem's LABEL, a PARTLABEL, or a PARTUUID of the partition where the kernel image resides. See Ext3#Assigning a label as an example of assigning a volume label.

Using rEFInd with an existing UEFI Windows installation

Note: The usual caveats of Dual boot with Windows apply.

rEFInd is compatible with the EFI system partition created by a UEFI Windows installation, so there is no need to create or format another FAT32 partition when installing Arch alongside Windows. Simply mount the existing ESP and install rEFInd as usual. By default, rEFInd's autodetection feature should recognize any existing Windows/recovery bootloaders.


Tango-go-next.pngThis article or section is a candidate for moving to Unified Extensible Firmware Interface.Tango-go-next.png

Notes: Although rEFInd has a special interface for these common tools, they are not a feature of rEFInd. (Discuss in Talk:REFInd#)

rEFInd supports running various 3rd-party tools. Tools need to be installed separately. Edit showtools in refind.conf to choose which ones to show.

showtools shell, memtest, gdisk, netboot, ...

UEFI shell

See UEFI shell.

Copy shellx64.efi to the root of the EFI System Partition


Install memtest86-efiAUR and copy it to esp/EFI/tools/.

# cp /usr/share/memtest86-efi/bootx64.efi esp/EFI/tools/memtest86.efi

GPT fdisk (gdisk)

There is no package for the EFI version of gdisk, but you can download a binary from gdisk's author.

Download gdisk-efi-*.zip from SourceForge, extract the archive, and copy gdisk_x64.efi to esp/EFI/tools.


Note: PXE support in rEFInd is experimental.

refind-efi contains the iPXE UEFI binaries, you just need to copy them to esp/EFI/tools/.

# cp /usr/share/refind/tools_x64/ipxe_discovery_x64.efi esp/EFI/tools/ipxe_discovery.efi
# cp /usr/share/refind/tools_x64/ipxe_x64.efi esp/EFI/tools/ipxe.efi


Using drivers in UEFI shell

To use rEFInd's drivers in UEFI shell load them using command load and refresh mapped drives with map -r.

Shell> load FS0:\EFI\refind\drivers\ext4_x64.efi
Shell> map -r

Now you can access your file system from UEFI shell.

btrfs subvolume root support

If booting a btrfs subvolume as root, amend the options line with rootflags=subvol=<root subvolume>. In the example below, root has been mounted as a btrfs subvolume called 'ROOT' (e.g. mount -o subvol=ROOT /dev/sdxY /mnt):


menuentry "Arch Linux" {
        icon     /EFI/refind/icons/os_arch.png
        volume   Boot
        loader   /boot/vmlinuz-linux
        initrd   /boot/initramfs-linux.img
        options  "root=PARTUUID=XXXXXXXX rw rootflags=subvol=ROOT"


A failure to do so will otherwise result in the following error message: ERROR: Root device mounted successfully, but /sbin/init does not exist.

Apple Macs

mactel-bootAUR is an experimental "bless" utility for Linux. If that does not work, use "bless" from within OSX to set rEFInd as the default boot entry:

# bless --setBoot --folder esp/EFI/refind --file esp/EFI/refind/refind_x64.efi


Currently, VirtualBox will only boot the default /EFI/BOOT/BOOT*.EFI path, so refind-install needs to be used with at least the --usedefault option. See VirtualBox#Installation in EFI mode for more information.

See also