From ArchWiki
Jump to: navigation, search

Related articles

Unbound is a validating, recursive, and caching DNS resolver. According to Wikipedia:Unbound (DNS Server), "Unbound has supplanted the Berkeley Internet Name Domain (BIND) as the default, base-system name server in several open source projects, where it is perceived as smaller, more modern, and more secure for most applications."


Install the unbound package.

Additionally, the expat package is required for DNSSEC validation.


A default configuration is already included at/etc/unbound/unbound.conf. Additionally, there is a commented sample configuration file with other available options located at /etc/unbound/unbound.conf.example. The following sections highlight different settings for the configuration file. See man unbound.conf for other settings and more details.

Unless otherwise specified, any options listed in this section are to be placed under the server section in the configuration like so:

  setting: value

Access control

You can specify the interfaces to answer queries from by IP address. To listen on localhost, use the default setting:


To listen on all interfaces, use the following:


To control which systems can access the server by IP address, use the access-control option:

access-control: subnet action

For example:

access-control: allow

action can be one of deny (drop message), refuse (polite error reply), allow (recursive ok), or allow_snoop (recursive and nonrecursive ok). By default everything is refused except for localhost.

Root hints

For querying a host that is not cached as an address the resolver needs to start at the top of the server tree and query the root servers to know where to go for the top level domain for the address being queried. Unbound comes with default builtin hints, but it is good practice to use a root-hints file since the builtin hints may become outdated.

First point unbound to the root.hints file:

root-hints: "/etc/unbound/root.hints"

Then, put a root hints file into the unbound configuration directory. The simplest way to do this is to run the command:

# curl -o /etc/unbound/root.hints https://www.internic.net/domain/named.cache

It is a good idea to update root.hints every six months or so in order to make sure the list of root servers is up to date. This can be done manually or by using Systemd/Timers. See #Roothints systemd timer for an example.

Local DNS server

If you want to use unbound as your local DNS server, set your nameserver to in your resolv.conf. You will want to have your nameserver be preserved.

Tip: A simple way to do this is to install the openresolv package and uncomment the line containing name_servers= in /etc/resolvconf.conf. Then run resolvconf -u to generate /etc/resolv.conf.

See Resolv.conf#Testing on how to test your settings.

Check specifically that the server being used is after making permanent changes to resolv.conf.

DNSSEC validation

unbound automatically copies the root server trust key anchor file from /etc/trusted-key.key to /etc/unbound/trusted-key.key. To use DNSSEC validation, point unbound to this file by adding the following setting:

trust-anchor-file: trusted-key.key

Also make sure that if a general forward to a DNS server has been set, then comment them out; otherwise, DNS queries will fail. DNSSEC validation will only be done if the DNS server being queried supports it.

Note: Including DNSSEC checking significantly increases DNS lookup times for initial lookups. Once an address is cached locally, then the lookup is virtually instantaneous.

To test if DNSSEC is working, use drill:

$ drill sigfail.verteiltesysteme.net
$ drill sigok.verteiltesysteme.net

The first command should give an rcode of SERVFAIL. The second should give an rcode of NOERROR.

Forwarding queries

Tip: Unbound can be used with DNSCrypt by setting up forwarding. See DNSCrypt#Example: configuration for Unbound.

If you have a local network which you wish to have DNS queries for and there is a local DNS server that you would like to forward queries to then you should include this line:

private-address: local_subnet/subnet_mask

For example:

Note: You can use private-address to protect against DNS Rebind attacks. Therefore you may enable RFC1918 networks ( fd00::/8 fe80::/10). Unbound may enable this feature by default in future releases.

To include a local DNS server for both forward and reverse local addresses a set of lines similar to these below is necessary with a forward and reverse lookup (choose the IP address of the server providing DNS for the local network accordingly by changing in the lines below):

local-zone: "10.in-addr.arpa." transparent

This line above is important to get the reverse lookup to work correctly.

name: "mynetwork.com."
name: "10.in-addr.arpa."
Note: There is a difference between forward zones and stub zones - stub zones will only work when connected to an authoritative DNS server directly. This would work for lookups from a BIND DNS server if it is providing authoritative DNS - but if you are referring queries to an unbound server in which internal lookups are forwarded on to another DNS server, then defining the referral as a stub zone in the machine here will not work. In that case it is necessary to define a forward zone as above, since forward zones can have daisy chain lookups onward to other DNS servers. i.e. forward zones can refer queries to recursive DNS servers. This distinction is important as you do not get any error messages indicating what the problem is if you use a stub zone inappropriately.

You can set up the localhost forward and reverse lookups with the following lines:

local-zone: "localhost." static
local-data: "localhost. 10800 IN NS localhost."
local-data: "localhost. 10800 IN SOA localhost. nobody.invalid. 1 3600 1200 604800 10800"
local-data: "localhost. 10800 IN A"
local-zone: "127.in-addr.arpa." static
local-data: "127.in-addr.arpa. 10800 IN NS localhost."
local-data: "127.in-addr.arpa. 10800 IN SOA localhost. nobody.invalid. 2 3600 1200 604800 10800"
local-data: " 10800 IN PTR localhost."

Then to use specific servers for default forward zones that are outside of the local machine and outside of the local network (i.e. all other queries will be forwarded to them, and then cached) add this to the configuration file (and in this example the first two addresses are the fast google DNS servers):

  name: "."

This will make unbound use Google and OpenDNS servers as the forward zone for external lookups.

Note: OpenDNS strips DNSSEC records from responses. Do not use the above forward zone if you want to enable #DNSSEC validation.


Starting Unbound

Start/enable the unbound.service systemd service.

Remotely control Unbound

unbound ships with the unbound-control utility which enables us to remotely administer the unbound server. It is similar to the pdnsd-ctl command of pdnsd.

Setting up unbound-control

Before you can start using it, the following steps need to be performed:

1) Firstly, you need to run the following command

# unbound-control-setup

which will generate a self-signed certificate and private key for the server, as well as the client. These files will be created in the /etc/unbound directory.

2) After that, edit /etc/unbound/unbound.conf and put the following contents in that. The control-enable: yes option is necessary, the rest can be adjusted as required.

    # Enable remote control with unbound-control(8) here.
    # set up the keys and certificates with unbound-control-setup.
    control-enable: yes
    # what interfaces are listened to for remote control.
    # give and ::0 to listen to all interfaces.
    # port number for remote control operations.
    control-port: 8953
    # unbound server key file.
    server-key-file: "/etc/unbound/unbound_server.key"
    # unbound server certificate file.
    server-cert-file: "/etc/unbound/unbound_server.pem"
    # unbound-control key file.
    control-key-file: "/etc/unbound/unbound_control.key"
    # unbound-control certificate file.
    control-cert-file: "/etc/unbound/unbound_control.pem"

Using unbound-control

Some of the commands that can be used with unbound-control are:

  • print statistics without resetting them
 # unbound-control stats_noreset
  • dump cache to stdout
 # unbound-control dump_cache
  • flush cache and reload configuration
 # unbound-control reload

Please refer to man 8 unbound-control for a detailed look at the operations it supports.

Tips and tricks

Block advertising

You can use the following file and simply include it in your unbound configuration: adservers

include: /etc/unbound/adservers
Note: In order to return some OK statuses on those hosts, you can change the redirection to a server you control and have that server respond with empty 204 replies, see this page

Adding an authoritative DNS server

For users who wish to run both a validating, recursive, caching DNS server as well as an authoritative DNS server on a single machine then it may be useful to refer to the wiki page nsd which gives an example of a configuration for such a system. Having one server for authoritative DNS queries and a separate DNS server for the validating, recursive, caching DNS functions gives increased security over a single DNS server providing all of these functions. Many users have used bind as a single DNS server, and some help on migration from bind to the combination of running nsd and bind is provided in the nsd wiki page.

WAN facing DNS

It is also possible to change the configuration files and interfaces on which the server is listening so that DNS queries from machines outside of the local network can access specific machines within the LAN. This is useful for web and mail servers which are accessible from anywhere, and the same techniques can be employed as has been achieved using bind for many years, in combination with suitable port forwarding on firewall machines to forward incoming requests to the right machine.

Roothints systemd timer

Here is an example systemd service and timer that update root.hints monthly using the method in #Root hints:

Description=Update root hints for unbound

ExecStart=/usr/bin/curl -o /etc/unbound/root.hints https://www.internic.net/domain/named.cache
Description=Run root.hints monthly


Start/enable the roothints.timer systemd timer.


It is possible to sandbox the default unbound.service by restricting capabilities and enforcing Systemd#Sandboxing application environments features:

  • CapabilityBoundingSet defines a whitelisted set of allowed capabilities
    • CAP_IPC_LOCK = Prevents paging by allowing unbound to lock data in memory
      • Not a hard requirement for unbound but rather a personal security choice
    • CAP_NET_BIND_SERVICE = Allows for socket binding to privileged ports < 1024
    • CAP_SETGID CAP_SETUID = Modifies the user group to nobody nobody
    • CAP_SYS_CHROOT = Allows the creation of a chroot at /etc/unbound
  • ReadWritePaths specifies paths to override from ProtectSystem=strict
    • /etc/unbound = Allows the ExecStartPre command to complete
    • /run = Allows access to the PID file at /run/unbound.pid

Tango-edit-cut.pngThis section is being considered for removal.Tango-edit-cut.png

Reason: If the service works, propose it upstream and link either the FS# or the resulting packaged service. Doing so will ensure all users benefit and it is tracked on package updates. (Discuss in Talk:Unbound#)
Edit unbound.service and add the following contents (cf. FS#52700):
ReadWritePaths=/etc/unbound /run
RestrictAddressFamilies=AF_INET AF_UNIX
SystemCallFilter=~@clock @cpu-emulation @debug @keyring @module mount @obsolete @resources
  • The @mount system call set includes chroot() which is required by unbound to build its environment
  • mount and unmount2 require explicit listing if they are to be blacklisted apart from the @mount macro
  • The above example blacklists CAP_SYS_ADM which should be one of the goals of a secure sandbox


Issues concerning num-threads

The man page for unbound.conf mentions:

     outgoing-range: <number>
             Number of ports to open. This number of file  descriptors  can  be  opened  per thread.

and some sources suggest that the num-threads parameter should be set to the number of cpu cores. The sample unbound.conf.example file merely has:

       # number of threads to create. 1 disables threading.
       # num-threads: 1

However it is not possible to arbitrarily increase num-threads above 1 without causing unbound to start with warnings in the logs about exceeding the number of file descriptors. In reality for most users running on small networks or on a single machine it should be unnecessary to seek performance enhancement by increasing num-threads above 1. If you do wish to do so then refer to official documentation and the following rule of thumb should work:

Set num-threads equal to the number of CPU cores on the system. E.g. for 4 CPUs with 2 cores each, use 8.

Set the outgoing-range to as large a value as possible, see the sections in the referred web page above on how to overcome the limit of 1024 in total. This services more clients at a time. With 1 core, try 950. With 2 cores, try 450. With 4 cores try 200. The num-queries-per-thread is best set at half the number of the outgoing-range.

Because of the limit on outgoing-range thus also limits num-queries-per-thread, it is better to compile with libevent, so that there is no 1024 limit on outgoing-range. If you need to compile this way for a heavy duty DNS server then you will need to compile the programme from source instead of using the unbound package.

See also