Intel graphics

From ArchWiki
(Redirected from Intel)
Jump to navigation Jump to search

Since Intel provides and supports open source drivers, Intel graphics are essentially plug-and-play.

For a comprehensive list of Intel GPU models and corresponding chipsets and CPUs, see Wikipedia:List of Intel graphics processing units.

Note: PowerVR-based graphics (GMA 3600 series) are not supported by open source drivers.


Install the mesa package, which provides the DRI driver for 3D acceleration.

Also see Hardware video acceleration.

Note: Some (Debian & Ubuntu, Fedora, KDE) recommend not installing the xf86-video-intel driver, and instead falling back on the modesetting driver for Gen4 and newer GPUs (GMA 3000 from 2006 and newer). See [1], [2], Xorg#Installation, and modesetting(4). However, the modesetting driver can cause problems such as Chromium Issue 370022 and vsync jitter/video stutter in mpv.


The Intel kernel module should load fine automatically on system boot.

If it does not happen, then:

  • Make sure you do not have nomodeset or vga= as a kernel parameter, since Intel requires kernel mode-setting.
  • Also, check that you have not disabled Intel by using any modprobe blacklisting within /etc/modprobe.d/ or /usr/lib/modprobe.d/.

Enable early KMS

Kernel mode setting (KMS) is supported by Intel chipsets that use the i915 DRM driver and is mandatory and enabled by default.

Refer to Kernel mode setting#Early KMS start for instructions on how to enable KMS as soon as possible at the boot process.

Enable GuC / HuC firmware loading

For Skylake and newer processors, some video features (e.g. CBR rate control on SKL low-power encoding mode) may require the use of an updated GPU firmware, which is currently (as of 4.16) not enabled by default. Enabling GuC/HuC firmware loading can cause issues on some systems; disable it if you experience freezing (for example, after resuming from hibernation).

Note: See Gentoo:Intel#Feature support for an overview of Intel processor generations.

For those processors it is necessary to add i915.enable_guc=2 to the kernel parameters to enable both GuC and HuC firmware loading. Alternatively, if the initramfs already includes the i915 module (see Kernel mode setting#Early KMS start), you can set these options through a file in /etc/modprobe.d/, e.g.:

options i915 enable_guc=2

Tango-view-refresh-red.pngThis article or section is out of date.Tango-view-refresh-red.png

Reason: GuC submission has been completely disabled for the kernel 5.4 and later, due to it reducing performance and causing bugs. Setting enable_guc=3 has no effect. (Discuss in Talk:Intel graphics#)
Note: It is possible to enable both GuC/HuC firmware loading and GuC submission by using the enable_guc=3 module parameter, although this is generally discouraged and may even negatively affect your system stability.

You can verify both are enabled by using dmesg:

$ dmesg
[drm] HuC: Loaded firmware i915/kbl_huc_ver02_00_1810.bin (version 2.0)
[drm] GuC: Loaded firmware i915/kbl_guc_ver9_39.bin (version 9.39)
i915 0000:00:02.0: GuC firmware version 9.39
i915 0000:00:02.0: GuC submission enabled
i915 0000:00:02.0: HuC enabled

Alternatively, check using:

# cat /sys/kernel/debug/dri/0/i915_huc_load_status
# cat /sys/kernel/debug/dri/0/i915_guc_load_status
Warning: Using GVT-g graphics virtualization by setting enable_gvt=1 is not supported as of linux 4.20.11 when GuC/HuC is also enabled. The i915 module would fail to initialize as shown in system journal.
$ journalctl
... kernel: [drm:intel_gvt_init [i915]] *ERROR* i915 GVT-g loading failed due to Graphics virtualization is not yet supported with GuC submission
... kernel: i915 0000:00:02.0: [drm:i915_driver_load [i915]] Device initialization failed (-5)
... kernel: i915: probe of 0000:00:02.0 failed with error -5
... kernel: snd_hda_intel 0000:00:1f.3: failed to add i915 component master (-19)

Xorg configuration

Note: The following requires xf86-video-intel.

There may be no need for any configuration to run Xorg.

However, if Xorg does not start, and to take advantage of some driver options, you can create an Xorg configuration file similar to the one below:

Section "Device"
  Identifier "Intel Graphics"
  Driver "intel"

Additional options are added by the user on new lines below Driver. For the full list of options, see the intel(4) man page.

Note: You might need to add more device sections than the one listed above. This will be indicated where necessary.


You may need to indicate Option "AccelMethod" when creating a configuration file, the classical options are UXA, SNA (default) and BLT.

If you experience issues with default SNA (e.g. pixelated graphics, corrupt text, etc.), try using UXA instead, which can be done by adding the following line to your configuration file:

Option      "AccelMethod"  "uxa"

See intel(4) under Option "AccelMethod".

Module-based options

The i915 kernel module allows for configuration via module options. Some of the module options impact power saving.

A list of all options along with short descriptions and default values can be generated with the following command:

$ modinfo -p i915

To check which options are currently enabled, run

# systool -m i915 -av

You will note that many options default to -1, resulting in per-chip powersaving defaults. It is however possible to configure more aggressive powersaving by using module options.

Warning: Diverting from the defaults will mark the kernel as tainted from Linux 3.18 onwards. This basically implies using other options than the per-chip defaults is considered experimental and not supported by the developers.

Framebuffer compression (enable_fbc)

Making use of Framebuffer compression (FBC) can reduce power consumption while reducing memory bandwidth needed for screen refreshes.

To enable FBC, use i915.enable_fbc=1 as kernel parameter or set in /etc/modprobe.d/i915.conf:

options i915 enable_fbc=1
Note: Framebuffer compression may be unreliable or unavailable on Intel GPU generations before Sandy Bridge (generation 6). This results in messages logged to the system journal similar to this one:
kernel: drm: not enough stolen space for compressed buffer, disabling.

Enabling frame buffer compression on pre-Sandy Bridge CPUs results in endless error messages:

$ dmesg
[ 2360.475430] [drm] not enough stolen space for compressed buffer (need 4325376 bytes), disabling
[ 2360.475437] [drm] hint: you may be able to increase stolen memory size in the BIOS to avoid this
The solution is to disable frame buffer compression which will imperceptibly increase power consumption (around 0.06 W). In order to disable it add i915.enable_fbc=0 to the kernel line parameters. More information on the results of disabled compression can be found here.


The goal of Intel Fastboot is to preserve the frame-buffer as setup by the BIOS or bootloader to avoid any flickering until Xorg has started [3].

To enable fastboot, set i915.fastboot=1 as kernel parameter or set in /etc/modprobe.d/i915.conf:

options i915 fastboot=1
Warning: This parameter is not enabled by default and may cause issues on some older (pre-Skylake) systems.[4]

Intel GVT-g graphics virtualization support

See Intel GVT-g for details.

Tips and tricks

Setting scaling mode

This can be useful for some full screen applications:

$ xrandr --output LVDS1 --set PANEL_FITTING param

where param can be:

  • center: resolution will be kept exactly as defined, no scaling will be made,
  • full: scale the resolution so it uses the entire screen or
  • full_aspect: scale the resolution to the maximum possible but keep the aspect ratio.

If it does not work, try:

$ xrandr --output LVDS1 --set "scaling mode" param

where param is one of "Full", "Center" or "Full aspect".

Note: This option currently does not work for external displays (e.g. VGA, DVI, HDMI, DP). [5]

Hardware accelerated H.264 decoding on GMA 4500

The libva-intel-driver package only provides hardware accelerated MPEG-2 decoding for GMA 4500 series GPUs. The H.264 decoding support is maintained in a separated g45-h264 branch, which can be used by installing libva-intel-driver-g45-h264AUR package. Note however that this support is experimental and its development has been abandoned. Using the VA-API with this driver on a GMA 4500 series GPU will offload the CPU but may not result in as smooth a playback as non-accelerated playback. Tests using mplayer showed that using vaapi to play back an H.264 encoded 1080p video halved the CPU load (compared to the XV overlay) but resulted in very choppy playback, while 720p worked reasonably well [6]. This is echoed by other experiences [7][dead link 2020-03-29 ⓘ]. Setting the preallocated video ram size higher in bios results in much better hardware decoded playback. Even 1080p h264 works well if this is done. Smooth playback (1080p/720p) works also with mpv-gitAUR in combination with ffmpeg-gitAUR and libva-intel-driver-g45-h264AUR. With MPV and the Firefox plugin "Watch with MPV"[8][dead link 2020-03-29 ⓘ] it is possible to watch hardware accelerated YouTube videos.

Old OpenGL Driver (i965)

As of Mesa 19.2, a new OpenGL driver, Iris, is available for testing. In Mesa 20.0, the Iris driver is promoted to be the default for Gen8+. Certain applications run faster with it. You may disable it and revert to use the old i965 driver by setting the MESA_LOADER_DRIVER_OVERRIDE=i965 environment variable before starting any OpenGL application. This setting does not affect Vulkan applications.

Warning: Report bugs and regressions regarding the Iris driver here.

Overriding reported OpenGL version

The MESA_GL_VERSION_OVERRIDE environment variable can be used to override the reported OpenGL version to any application. For example, setting MESA_GL_VERSION_OVERRIDE=4.5 will report OpenGL 4.5.

Warning: You can use this variable to report any known OpenGL version, even if it is not supported by the GPU. Some applications might no longer crash, some may start crashing - you probably do not want to set this variable globally.

Setting brightness and gamma

See Backlight.



The SNA acceleration method causes tearing on some machines. To fix this, enable the "TearFree" option in the driver by adding the following line to your configuration file:

Section "Device"
  Identifier "Intel Graphics"
  Driver "intel"

  Option "TearFree" "true"

See the original bug report for more info.

  • This option may not work when SwapbuffersWait is false.
  • This option may increase memory allocation considerably and reduce performance. [9]
  • This option is problematic for applications that are very picky about vsync timing, like Super Meat Boy.
  • This option does not work with UXA acceleration method, only with SNA.

Disable Vertical Synchronization (VSYNC)

Useful when:

  • Chomium/Chrome has lags and slow performance due to GPU and runs smoothly with --disable-gpu switch
  • glxgears test does not show desired performance

The intel-driver uses Triple Buffering for vertical synchronization, this allows for full performance and avoids tearing. To turn vertical synchronization off (e.g. for benchmarking) use this .drirc in your home directory:

<device screen="0" driver="dri2">
	<application name="Default">
		<option name="vblank_mode" value="0"/>
Note: Do not use driconfAUR to create this file. It is buggy and will set the wrong driver.

DRI3 issues

DRI3 is the default DRI version in xf86-video-intel. On some systems this can cause issues such as this. To switch back to DRI2 add the following line to your configuration file:

Option "DRI" "2"

For the modesetting driver, this method of disabling DRI3 does not work. Instead, one can set the environment variable LIBGL_DRI3_DISABLE=1.

Font and screen corruption in GTK applications (missing glyphs after suspend/resume)

Should you experience missing font glyphs in GTK applications, the following workaround might help. Edit /etc/environment to add the following line:


See also FreeDesktop bug 88584.

Blank screen during boot, when "Loading modules"

If using "late start" KMS and the screen goes blank when "Loading modules", it may help to add i915 and intel_agp to the initramfs. See Kernel mode setting#Early KMS start section.

Alternatively, appending the following kernel parameter seems to work as well:


If you need to output to VGA then try this:


X freeze/crash with intel driver

Some issues with X crashing, GPU hanging, or problems with X freezing, can be fixed by disabling the GPU usage with the NoAccel option - add the following lines to your configuration file:

  Option "NoAccel" "True"

Alternatively, try to disable the 3D acceleration only with the DRI option:

  Option "DRI" "False"

Baytrail complete freeze

If you are using kernel > 3.16 on Baytrail architecture and randomly encounter total system freezes, the following kernel option is a workaround until this bug is fixed in the linux kernel.


This is originally an Intel CPU bug that can be triggered by certain c-state transitions. It can also happen with Linux kernel 3.16 or Windows, though apparently much more rarely. The kernel option will prevent the freeze by avoiding c-state transitions but will also increase power consumption.

Adding undetected resolutions

This issue is covered on the Xrandr page.

Backlight is not adjustable

If after resuming from suspend, the hotkeys for changing the screen brightness do not take effect, check your configuration against the Backlight article.

If the problem persists, try one of the following kernel parameters:

acpi_osi="!Windows 2012"

Also make sure you are not using fastboot mode (i915.fastboot kernel parameter), it is known for breaking backlight controls.

Corruption or unresponsiveness in Chromium and Firefox

If you experience corruption, unresponsiveness, lags or slow performance in Chromium and/or Firefox some possible solutions are:

Kernel crashing w/kernels 4.0+ on Broadwell/Core-M chips

A few seconds after X/Wayland loads the machine will freeze and journalctl will log a kernel crash referencing the Intel graphics as below:

Jun 16 17:54:03 hostname kernel: BUG: unable to handle kernel NULL pointer dereference at           (null)
Jun 16 17:54:03 hostname kernel: IP: [<          (null)>]           (null)
Jun 16 17:54:03 hostname kernel: CPU: 0 PID: 733 Comm: gnome-shell Tainted: G     U     O    4.0.5-1-ARCH #1
Jun 16 17:54:03 hostname kernel: Call Trace:
Jun 16 17:54:03 hostname kernel:  [<ffffffffa055cc27>] ? i915_gem_object_sync+0xe7/0x190 [i915]
Jun 16 17:54:03 hostname kernel:  [<ffffffffa0579634>] intel_execlists_submission+0x294/0x4c0 [i915]
Jun 16 17:54:03 hostname kernel:  [<ffffffffa05539fc>] i915_gem_do_execbuffer.isra.12+0xabc/0x1230 [i915]
Jun 16 17:54:03 hostname kernel:  [<ffffffffa055d349>] ? i915_gem_object_set_to_cpu_domain+0xa9/0x1f0 [i915]
Jun 16 17:54:03 hostname kernel:  [<ffffffff811ba2ae>] ? __kmalloc+0x2e/0x2a0
Jun 16 17:54:03 hostname kernel:  [<ffffffffa0555471>] i915_gem_execbuffer2+0x141/0x2b0 [i915]
Jun 16 17:54:03 hostname kernel:  [<ffffffffa042fcab>] drm_ioctl+0x1db/0x640 [drm]
Jun 16 17:54:03 hostname kernel:  [<ffffffffa0555330>] ? i915_gem_execbuffer+0x450/0x450 [i915]
Jun 16 17:54:03 hostname kernel:  [<ffffffff8122339b>] ? eventfd_ctx_read+0x16b/0x200
Jun 16 17:54:03 hostname kernel:  [<ffffffff811ebc36>] do_vfs_ioctl+0x2c6/0x4d0
Jun 16 17:54:03 hostname kernel:  [<ffffffff811f6452>] ? __fget+0x72/0xb0
Jun 16 17:54:03 hostname kernel:  [<ffffffff811ebec1>] SyS_ioctl+0x81/0xa0
Jun 16 17:54:03 hostname kernel:  [<ffffffff8157a589>] system_call_fastpath+0x12/0x17
Jun 16 17:54:03 hostname kernel: Code:  Bad RIP value.
Jun 16 17:54:03 hostname kernel: RIP  [<          (null)>]           (null)

This can be fixed by disabling execlist support which was changed to default on with kernel 4.0. Add the following kernel parameter:


This is known to be broken to at least kernel 4.0.5.

Lag in Windows guests

The video output of a Windows guest in VirtualBox sometimes hangs until the host forces a screen update (e.g. by moving the mouse cursor). Removing the enable_fbc=1 option fixes this issue.

Screen flickering

Panel Self Refresh (PSR), a power saving feature used by Intel iGPUs is known to cause flickering in some instances FS#49628 FS#49371 FS#50605. A temporary solution is to disable this feature using the kernel parameter i915.enable_psr=0.

OpenGL 2.1 with i915 driver

The update of mesa from version 13.x to 17 may break support for OpenGL 2.1 on third gen Intel GPUs (GMA3100, see here), as described in this article, reverting it back to OpenGL 1.4. However this could be restored manually by setting /etc/drirc or ~/.drirc options like:

    <device driver="i915">
        <application name="Default">
            <option name="stub_occlusion_query" value="true" />
            <option name="fragment_shader" value="true" />
Note: the reason of this step back was Chromium and other apps bad experience. If needed, you might edit the drirc file in a "app-specific" style, see here, to disable gl2.1 on executable chromium for instance.

KMS Issue: console is limited to small area

One of the low-resolution video ports may be enabled on boot which is causing the terminal to utilize a small area of the screen. To fix, explicitly disable the port with an i915 module setting with video=SVIDEO-1:d in the kernel command line parameter in the bootloader. See Kernel parameters for more info.

If that does not work, try disabling TV1 or VGA1 instead of SVIDEO-1. Video port names can be listed with xrandr.

Weathered colors (color range problems)

The "Broadcast RGB" property in the Intel driver defines the color range which can be used by the display - either "Limited 16:235" (which limits the color range for some displays that cannot properly process full range color signals) and "Full". Since kernel 3.9, the new default property "Automatic" tries to determine whenever the display supports the full color range, and if it does not/detection fails, color range falls back to "Limited 16:235". If detections faulty falls back to limited color range, it results in weathered colors and grey blacks. On some displays/connectors, despite the full color range being supported properly, automatic detection fails and falls back to the limited color range (upstream bug report, kernels 4.18-4.20).

You can forcefully set the desired color range by running xrandr --output <OUT> --set "Broadcast RGB" "Full" (replace <OUT> with the appropriate output device, listed by running xrandr). There is no way to persist this setting in xorg.conf.

See also