From ArchWiki
(Redirected from Router:Basic)
Jump to: navigation, search

This article is a tutorial for turning a computer into an internet gateway/router. To strengthen its security it should not run any services available to the outside world. Towards the LAN, run only gateway specific services especially do not run httpd, ftpd, samba, nfsd, etc. as those belong on a server in the LAN since they introduce security risks.

This article does not attempt to show how to set up a shared connection between 2 PCs using cross-over cables. For a simple internet sharing solution, see Internet sharing.

Hardware Requirements

  • At least 1 GB of hard drive space. The base install will take up around 500MB of space and if you want to use a caching web proxy, you will need to reserve space for the cache as well.
  • At least two physical network interfaces: a gateway connects two networks with each other (actually router can be made using single physical interface that underlay two VLAN interfaces and connected to VLAN-aware switch, so-called router-on-a-stick configuration, but it is not covered in this article). You will need to be able to connect those networks to the same physical computer. One interface must connect to the external network, while the other connects to the internal network.
  • A hub, switch or UTP cable: You need a way to connect the other computers to the gateway


Conventions in this guide will be to use non-realistic interface names, to avoid confusion about which interface is which.

  • intern0: the network card connected to the LAN. On an actual computer it will probably have the name enp2s0, enp1s1, etc.
  • extern0: the network card connected to the external network (or WAN). It will probably have the name enp2s0, enp1s1, etc.

Network interface configuration

Persistent naming and Interface renaming

Systemd automatically chooses unique interface names for all your interfaces. These are persistent and will not change when you reboot. If you would like to rename interface to user friendlier names read Network configuration#Device names.

IP configuration

Now you will need to configure the network interfaces. The best way to do so is using netctl profiles. You will need to create two profiles.

Note: If you will be connecting to the Internet only via PPPoE (you have one WAN port) you do not need to setup or enable the extern0-profile. See below for more information on configuring PPPoE.
  • /etc/netctl/extern0-profile
Description='Public Interface.'
  • /etc/netctl/intern0-profile
Description='Private Interface'
Note: The example configuration above assumes a full subnet. If you are building the gateway for a small amount of people, you will want to change the CIDR suffix to accommodate a smaller range. For example /27 will give you to You can find many CIDR calculators online.

Next up is to set up the interfaces with netctl.

# netctl enable extern0-profile
# netctl enable intern0-profile

ADSL connection/PPPoE

Using rp-pppoe, we can connect an ADSL modem to the extern0 interface of the firewall and have Arch manage the connection. Make sure you put the modem in bridged mode though (either half-bridge or RFC1483), otherwise the modem will act as a router too. Install the rp-pppoe package.

It should be noted that if you use only PPPoE to connect to the internet (ie. you do not have other WAN port, except for the one that connects to your modem) you do not need to set up the extern0-profile as the external pseudo-interface will be ppp0.

PPPoE configuration

You can use netctl to setup the pppoe connection. To get started

# cp /etc/netctl/examples/pppoe /etc/netctl/

and start editing. For the interface configuration choose the interface that connects to the modem. If you only connect to the internet through PPPoE this will probably be extern0. Fill in the rest of the fields with your ISP information. See the pppoe section in netctl.profile man page for more information on the fields.


We will use dnsmasq, a DNS and DHCP daemon for the LAN. It was specifically designed for small sites. Install it with the dnsmasq package.

Dnsmasq needs to be configured to be a DHCP server with a configuration similar to the following:

interface=intern0 # make dnsmasq listen for requests only on intern0 (our LAN)
expand-hosts      # add a domain to simple hostnames in /etc/hosts    # allow fully qualified domain names for DHCP hosts (needed when
                  # "expand-hosts" is used)
dhcp-range=,,,1h # defines a DHCP-range for the LAN: 
                  # from to .255 with a subnet mask of and a
                  # DHCP lease of 1 hour (change to your own preferences)

Somewhere below, you will notice you can also add "static" DHCP leases, i.e. assign an IP-address to the MAC-address of a computer on the LAN. This way, whenever the computer requests a new lease, it will get the same IP. That is very useful for network servers with a DNS record. You can also deny certain MAC's from obtaining an IP.

Now start and enable dnsmasq.service.

Connection sharing

Time to tie the two network interfaces to each other.

Connection sharing with shorewall

See Shorewall for a detailed configuration guide.


First of all we need to allow packets to hop from one network interface to the other. See Internet sharing#Enable packet forwarding for details.

In order for packets to be properly send and received it is necessary to translate the IP addresses between the outward facing network and the subnet used locally. The technique is called masquerading and is necessary for both interfaces. For this task we are going to use iptables:


The router should now be fully functioning and route your traffic. However since it is facing the public internet it makes sense to additionally guard it using a Simple stateful firewall.

IPv6 tips

Merge-arrows-2.pngThis article or section is a candidate for merging with IPv6.Merge-arrows-2.png

Notes: Merge into the main article, the topic is not specific to router configuration. The wording should be probably changed along the way. (Discuss in Talk:Router#)

Useful reading: IPv6 and the wikipedia:IPv6.

Unique Local Addresses

You can use your router in IPv6 mode even if you do not have an IPv6 address from your ISP. Unless you disable IPv6 all interfaces should have been assigned a unique fe80::/10 address.

For internal networking the block fc00::/7 has been reserved. These addresses are guaranteed to be unique and non-routable from the open internet. Addresses that belong to the fc00::/7 block are called Unique Local Addresses. To get started generate a ULA /64 block to use in your network. For this example we will use fd00:aaaa:bbbb:cccc::/64. Firstly we must assign a static IPv6 on the internal interface. Modify the intern0-profile we created above to include the following line

 IPCustom=('-6 addr add fd00:aaaa:bbbb:cccc::1/64 dev intern0')

This will add the ULA to the internal interface. As far as the router goes, this is all you need to configure.

Global Unicast Addresses

If your ISP or WAN network can access the IPv6 Internet you can additionally assign global link addresses to your router and propagate them through SLAAC to your internal network. The global unicast prefix is usually either static or provided through prefix delegation.

Static IPv6 prefix

If your ISP has provided you with a static prefix then edit /etc/netctl/extern0-profile and simply add the IPv6 and the IPv6 prefix (usually /64) you have been provided

IPCustom=('-6 addr add 2002:1:2:3:4:5:6:7/64 dev extern0')

You can use this in addition to the ULA address described above.

Acquiring IPv6 prefix via DHCPv6-PD

If your ISP handles IPv6 via prefix delegation then you can follow the instructions in the main IPv6 article on how to properly configure your router. Following the conventions of this article the WAN interface is extern0 (or ppp0 if you are connecting through PPPoE) and the LAN interface is intern0.

Router Advertisement and Stateless Autoconfiguration (SLAAC)

To properly hand out IPv6s to the network clients we will need to use an advertising daemon. Follow the details of the main IPv6 article on how to setup radvd. Following the convention of this guide the LAN facing interfaces is intern0. You can either advertise all prefixes or choose which prefixes will be assigned to the local network.

Optional additions


The above configuration of shorewall does not include UPnP support. Use of UPnP is discouraged as it may make the gateway vulnerable to attacks from within the LAN. However, some applications require this to function correctly.

To enable UPnP on your router, you need to install an UPnP Internet gateway daemon (IGD). To get it, install the miniupnpd package.

Read the Shorewall guide on UPnP for more information

Remote administration

OpenSSH can be used to administer your router remotely. This is useful for running it "headless" (no monitor or input devices).

Caching web proxy

See Squid or Polipo for the setup of a web proxy to speed up browsing and/or adding an extra layer of security.

Time server

To use the router as a time server, see Network Time Protocol daemon.

Then, configure shorewall or iptables to allow NTP traffic in and out.

Content filtering

Install and configure DansGuardian or Privoxy if you need a content filtering solution.

Traffic shaping

Traffic shaping is very useful, especially when you are not the only one on the LAN. The idea is to assign a priority to different types of traffic. Interactive traffic (ssh, online gaming) probably needs the highest priority, while P2P traffic can do with the lowest. Then there is everything in between.

Traffic shaping with shorewall

See Shorewall#Traffic shaping

See also