User:Wacek/brudnopis systemd

From ArchWiki

Od project web page:

systemd to zestaw podstawowych elementów składowych systemu Linux. Zapewnia system i menedżera usług, który działa jako PID 1 i uruchamia resztę systemu. Systemd zapewnia agresywne funkcje równoległe, wykorzystuje aktywację socket i D-Bus do uruchamiania usług, oferuje uruchamianie demonów na żądanie, śledzi procesy za pomocą grup kontrolnych systemu Linux, utrzymuje punkty montowania i automowania oraz wdraża skomplikowaną kontrolę usług opartą na zależnościach logika. systemd obsługuje skrypty startowe SysV i LSB i działa jako zamiennik dla sysvinit. Inne części obejmują demona rejestrowania, narzędzia do kontrolowania podstawowej konfiguracji systemu, takie jak nazwa hosta, data, ustawienia regionalne, utrzymywanie listy zalogowanych użytkowników oraz uruchamianie kontenerów i maszyn wirtualnych, kont systemowych, katalogów i ustawień środowiska wykonawczego oraz demonów do zarządzania prostą siecią konfiguracja, synchronizacja czasu sieciowego, przekazywanie logów i rozpoznawanie nazw.
Note: Aby uzyskać szczegółowe wyjaśnienie, dlaczego Arch przeszedł do systemu, zobacz this forum post.

Podstawowe użycie systemctl

Główną komendą używaną do introspekcji i kontroli systemd jest systemctl. Niektóre z jego zastosowań sprawdzają stan systemu i zarządzają systemem i usługami. Zobacz systemctl(1) po więcej szczegółów.

Tip:
  • Możesz użyć wszystkich następujących poleceń systemctl ze -H user@host przełącz na kontrolowanie instancji "systemd" na zdalnej maszynie. Spowoduje to użycie SSH do połączenia ze zdalną instancją "systemd".
  • Plasma użytkownicy mogą instalować systemd-kcm jako graficzny interfejs dla systemctl. Po zainstalowaniu moduł zostanie dodany pod System administration.

Analizowanie stanu systemu

Pokaż status systemu używając:

$ systemctl status

Wyświetla działające jednostki:

$ systemctl

lub:

$ systemctl list-units

Lista nieudanych jednostek:

$ systemctl --failed

Dostępne pliki jednostek można zobaczyć w /usr/lib/systemd/system/ i /etc/systemd/system/ (ta ostatnia ma pierwszeństwo). List installed pliki jednostkowe z:

$ systemctl list-unit-files

Korzystanie z jednostek

Jednostkami mogą być na przykład usługi (.service), Punkty montowania (.mount), urządzenia (.device) lub gniazda (.socket).

Podczas korzystania z systemctl, na ogół musisz podać pełną nazwę pliku jednostki, w tym jej sufiks, na przykład sshd.socket. Istnieje jednak kilka krótkich formularzy podczas określania jednostki w następujących komendach "systemctl":

  • Jeśli nie określisz sufiksu, systemctl przyjmiee .service. Na przykład, netctl i netctl.service są równoważne.
  • Punkty montowania zostaną automatycznie przetłumaczone na odpowiednie .mount jednostki. Na przykład, określając /home jest równoznaczne home.mount.
  • Podobnie do punktów montowania, urządzenia są automatycznie tłumaczone na odpowiednie .device jednostka, dlatego określając /dev/sda2 jest równoważne dev-sda2.device.

Zobacz systemd.unit(5) for details.

Note: Niektóre nazwy jednostek zawierają @ znak (np. name@string.service): to znaczy, że są instances jednostki "template", której rzeczywista nazwa pliku nie zawiera string część (np. name@.service). string jest nazywany "identyfikatorem instancji" i jest podobny do argumentu, który jest przekazywany do jednostki szablonu po wywołaniu komendą "systemctl": w pliku jednostki będzie zastępował %i specyficzny.

Aby być dokładniejszym, przed próbą utworzenia instancji name@.suffix jednostka szablonu, systemd faktycznie szuka jednostki z dokładn name@string.suffix nazwa pliku, chociaż zgodnie z konwencją takie "zderzenie" zdarza się rzadko, tj. większość plików jednostek zawierających znak @ Znak ma być szablonem. Ponadto, jeśli jednostka szablonu zostanie wywołana bez identyfikatora instancji, po prostu zawiedzie, ponieważ %i Nie można zastąpić specyfikatora.

Tip:
  • Większość poniższych poleceń działa również, jeśli określono wiele jednostek, patrz systemctl(1) po więcej informacji.
  • Przełącznik --now może być używany w połączeniu z enable, disable, i mask aby odpowiednio uruchomić, zatrzymać lub zamaskować natychmiast jednostkę, a nie po następnym rozruchu.
  • Pakiet może oferować jednostki do różnych celów. Jeśli właśnie zainstalowałeś pakiet, pacman -Qql package | grep -Fe .service -e .socket może być użyty do sprawdzenia i znalezienia ich.

Start a unit immediately:

# systemctl start unit

Stop a unit immediately:

# systemctl stop unit

Restart a unit:

# systemctl restart unit

Poproś jednostkę, aby przeładowała swoją konfigurację:

# systemctl reload unit

Pokaż status jednostki, w tym, czy działa, czy też nie:

$ systemctl status unit

Sprawdź czy jednostka jest już włączona, czy nie:

$ systemctl is-enabled unit

Włącz jednostkę, która ma być uruchomiona podczas rozruchu:

# systemctl enable unit

Włącz jednostkę, która zostanie uruchomiona natychmiast po uruchomieniu bootup i Start:

# systemctl enable --now unit

Wyłącz jednostkę, której nie można uruchomić podczas uruchamiania systemu:

# systemctl disable unit

Maskuj jednostkę uniemożliwiającą jej uruchomienie:

# systemctl mask unit

odmaskuj jednostkę:

# systemctl unmask unit

Pokaż 'stronę podręcznika powiązaną z jednostką (musi to być obsługiwane przez plik jednostki):

$ systemctl help unit

Załaduj ponownie systemd, szukając nowych lub zmienionych jednostek:

# systemctl daemon-reload

Zarządzanie energią

polkit jest niezbędny do zarządzania energią jako nieuprzywilejowany użytkownik. Jeśli użytkownik jest w lokalnej sesji użytkownika "systemd-logind" i żadna inna sesja nie jest aktywna, poniższe polecenia będą działały bez uprawnień root'a. Jeśli nie (na przykład, ponieważ inny użytkownik jest zalogowany do tty), systemd automatycznie zapyta cię o hasło roota.

Zamknij system i zrestartuj system:

$ systemctl reboot

Wyłącz i wyłącz system:

$ systemctl poweroff

Zawieś system:

$ systemctl suspend

Przełącz system w stan hibernacji:

$ systemctl hibernate

Przestaw system w stan uśpienia hybrydowego (lub zawieś na oba):

$ systemctl hybrid-sleep

Zapisywanie plików jednostek

Składnia systemd's unit files jest inspirowana specyfikacją XDG Desktop Entry .desktop pliki, które z kolei są inspirowane przez system Microsoft Windows .ini pliki. Pliki jednostek są ładowane z wielu lokalizacji (aby wyświetlić pełną listę, uruchom systemctl show --property=UnitPath),ale najważniejsze z nich są (wymienione od najniższego do najwyższego priorytetu):

  • /usr/lib/systemd/system/: jednostki dostarczane przez zainstalowane pakiety
  • /etc/systemd/system/: jednostki zainstalowane przez administratora systemu
Note:
  • Ścieżki ładowania są zupełnie inne podczas uruchamiania "systemd" user mode.
  • Nazwy urządzeń systemd mogą zawierać wyłącznie znaki alfanumeryczne ASCII, podkreślenia i kropki. Wszystkie inne znaki muszą być zastąpione przez C-style "\x2d" ucieka, lub wykorzystuje ich wcześniej zdefiniowaną semantykę ('@', '-'). Zobacz systemd.unit(5) i systemd-escape(1) po więcej informacji.

Spójrz na jednostki zainstalowane przez pakiety na przykładach, a także na annotated example section z systemd.service(5).

Tip: Komentarze dodane z # mogą być również używane w plikach jednostek, ale tylko w nowych liniach. Nie używaj komentarzy na końcu wiersza po parametrach systemd, bo urządzenie nie uruchomi się.

Obsługa zależności

W systemie systemd zależności można rozwiązać, poprawnie projektując pliki jednostek. Najbardziej typowy przypadek polega na tym, że jednostka A wymaga, aby jednostka B działała przed uruchomieniem A. W takim przypadku dodaj Requires=B i After=B do [Unit] Sekcji A. Jeśli zależność jest opcjonalna, dodaj Wants=B i After=B zamiast. Zauważ, że Wants= i Requires= nie oznacza After=, co oznacza, że jeśli After=nie określono, obie jednostki zostaną uruchomione równolegle.

Zależności są zwykle umieszczane na usługach, a nie na nich #Targets. Na przykład, network.targetjest ciągnięta przez dowolną usługę konfigurującą interfejsy sieciowe, dlatego zamawiasz niestandardową jednostkę, ponieważ jest ona wystarczająca network.target i tak się zaczęło.

Service types

There are several different start-up types to consider when writing a custom service file. This is set with the Type= parameter in the [Service] section:

  • Type=simple (default): systemd considers the service to be started up immediately. The process must not fork. Do not use this type if other services need to be ordered on this service, unless it is socket activated.
  • Type=forking: systemd considers the service started up once the process forks and the parent has exited. For classic daemons use this type unless you know that it is not necessary. You should specify PIDFile= as well so systemd can keep track of the main process.
  • Type=oneshot: this is useful for scripts that do a single job and then exit. You may want to set RemainAfterExit=yes as well so that systemd still considers the service as active after the process has exited.
  • Type=notify: identical to Type=simple, but with the stipulation that the daemon will send a signal to systemd when it is ready. The reference implementation for this notification is provided by libsystemd-daemon.so.
  • Type=dbus: the service is considered ready when the specified BusName appears on DBus's system bus.
  • Type=idle: systemd will delay execution of the service binary until all jobs are dispatched. Other than that behavior is very similar to Type=simple.

See the systemd.service(5) man page for a more detailed explanation of the Type values.

Editing provided units

To avoid conflicts with pacman, unit files provided by packages should not be directly edited. There are two safe ways to modify a unit without touching the original file: create a new unit file which overrides the original unit or create drop-in snippets which are applied on top of the original unit. For both methods, you must reload the unit afterwards to apply your changes. This can be done either by editing the unit with systemctl edit (which reloads the unit automatically) or by reloading all units with:

# systemctl daemon-reload
Tip:
  • You can use systemd-delta to see which unit files have been overridden or extended and what exactly has been changed.
  • Use systemctl cat unit to view the content of a unit file and all associated drop-in snippets.
  • The default syntax highlighting for systemd unit files within Vim is the same as for INI files. However, if you want something more systemd-specific, install vim-systemd.

Replacement unit files

To replace the unit file /usr/lib/systemd/system/unit, create the file /etc/systemd/system/unit and reenable the unit to update the symlinks:

# systemctl reenable unit

Alternatively, run:

# systemctl edit --full unit

This opens /etc/systemd/system/unit in your editor (copying the installed version if it does not exist yet) and automatically reloads it when you finish editing.

Note: The replacement units will keep on being used even if Pacman updates the original units in the future. This method makes system maintenance more difficult and therefore the next approach is preferred.

Drop-in files

To create drop-in files for the unit file /usr/lib/systemd/system/unit, create the directory /etc/systemd/system/unit.d/ and place .conf files there to override or add new options. systemd will parse and apply these files on top of the original unit.

The easiest way to do this is to run:

# systemctl edit unit

This opens the file /etc/systemd/system/unit.d/override.conf in your text editor (creating it if necessary) and automatically reloads the unit when you are done editing.

Revert to vendor version

To revert any changes to a unit made using systemctl edit do:

# systemctl revert unit

Examples

For example, if you simply want to add an additional dependency to a unit, you may create the following file:

/etc/systemd/system/unit.d/customdependency.conf
[Unit]
Requires=new dependency
After=new dependency

As another example, in order to replace the ExecStart directive for a unit that is not of type oneshot, create the following file:

/etc/systemd/system/unit.d/customexec.conf
[Service]
ExecStart=
ExecStart=new command

Note how ExecStart must be cleared before being re-assigned [1]. The same holds for every item that can be specified multiple times, e.g. OnCalendar for timers.

One more example to automatically restart a service:

/etc/systemd/system/unit.d/restart.conf
[Service]
Restart=always
RestartSec=30

Targets

This article or section needs language, wiki syntax or style improvements. See Help:Style for reference.

Reason: Unclear description, copy-pasted content (explicitly mentions "Fedora"). (Discuss in User talk:Wacek/brudnopis systemd#Make section "Targets" more clearly)

systemd uses targets which serve a similar purpose as runlevels but act a little different. Each target is named instead of numbered and is intended to serve a specific purpose with the possibility of having multiple ones active at the same time. Some targets are implemented by inheriting all of the services of another target and adding additional services to it. There are systemd targets that mimic the common SystemVinit runlevels so you can still switch targets using the familiar telinit RUNLEVEL command.

Get current targets

The following should be used under systemd instead of running runlevel:

$ systemctl list-units --type=target

Create custom target

The runlevels that held a defined meaning under sysvinit (i.e., 0, 1, 3, 5, and 6); have a 1:1 mapping with a specific systemd target. Unfortunately, there is no good way to do the same for the user-defined runlevels like 2 and 4. If you make use of those it is suggested that you make a new named systemd target as /etc/systemd/system/your target that takes one of the existing runlevels as a base (you can look at /usr/lib/systemd/system/graphical.target as an example), make a directory /etc/systemd/system/your target.wants, and then symlink the additional services from /usr/lib/systemd/system/ that you wish to enable.

Mapping between SysV runlevels and systemd targets

SysV Runlevel systemd Target Notes
0 runlevel0.target, poweroff.target Halt the system.
1, s, single runlevel1.target, rescue.target Single user mode.
2, 4 runlevel2.target, runlevel4.target, multi-user.target User-defined/Site-specific runlevels. By default, identical to 3.
3 runlevel3.target, multi-user.target Multi-user, non-graphical. Users can usually login via multiple consoles or via the network.
5 runlevel5.target, graphical.target Multi-user, graphical. Usually has all the services of runlevel 3 plus a graphical login.
6 runlevel6.target, reboot.target Reboot
emergency emergency.target Emergency shell

Change current target

In systemd targets are exposed via target units. You can change them like this:

# systemctl isolate graphical.target

This will only change the current target, and has no effect on the next boot. This is equivalent to commands such as telinit 3 or telinit 5 in Sysvinit.

Change default target to boot into

The standard target is default.target, which is aliased by default to graphical.target (which roughly corresponds to the old runlevel 5). To change the default target at boot-time, append one of the following kernel parameters to your bootloader:

  • systemd.unit=multi-user.target (which roughly corresponds to the old runlevel 3),
  • systemd.unit=rescue.target (which roughly corresponds to the old runlevel 1).

Alternatively, you may leave the bootloader alone and change default.target. This can be done using systemctl:

# systemctl set-default multi-user.target

Temporary files

"systemd-tmpfiles creates, deletes and cleans up volatile and temporary files and directories." It reads configuration files in /etc/tmpfiles.d/ and /usr/lib/tmpfiles.d/ to discover which actions to perform. Configuration files in the former directory take precedence over those in the latter directory.

Configuration files are usually provided together with service files, and they are named in the style of /usr/lib/tmpfiles.d/program.conf. For example, the Samba daemon expects the directory /run/samba to exist and to have the correct permissions. Therefore, the samba package ships with this configuration:

/usr/lib/tmpfiles.d/samba.conf
D /run/samba 0755 root root

Configuration files may also be used to write values into certain files on boot. For example, if you used /etc/rc.local to disable wakeup from USB devices with echo USBE > /proc/acpi/wakeup, you may use the following tmpfile instead:

/etc/tmpfiles.d/disable-usb-wake.conf
w /proc/acpi/wakeup - - - - USBE

See the systemd-tmpfiles(8) and tmpfiles.d(5) man pages for details.

Note: This method may not work to set options in /sys since the systemd-tmpfiles-setup service may run before the appropriate device modules is loaded. In this case you could check whether the module has a parameter for the option you want to set with modinfo module and set this option with a config file in /etc/modprobe.d. Otherwise you will have to write a udev rule to set the appropriate attribute as soon as the device appears.

Timers

A timer is a unit configuration file whose name ends with .timer and encodes information about a timer controlled and supervised by systemd, for timer-based activation. See systemd/Timers.

Note: Timers can replace cron functionality to a great extent. See systemd/Timers#As a cron replacement.

Mounting

systemd is in charge of mounting the partitions and filesystems specified in /etc/fstab. The systemd-fstab-generator(8) translates all the entries in /etc/fstab into systemd units, this is performed at boot time and whenever the configuration of the system manager is reloaded.

systemd extends the usual fstab capabilities and offers additional mount options. These affect the dependencies of the mount unit, they can for example ensure that a mount is performed only once the network is up or only once another partition is mounted. The full list of specific systemd mount options, typically prefixed with x-systemd., is detailed in systemd.mount(5) § FSTAB.

An example of these mount options in the context of automounting, which means mounting only when the resource is required rather than automatically at boot time, is provided in fstab#Automount with systemd.

Journal

systemd has its own logging system called the journal; therefore, running a syslog daemon is no longer required. To read the log, use:

# journalctl

In Arch Linux, the directory /var/log/journal/ is a part of the systemd package, and the journal (when Storage= is set to auto in /etc/systemd/journald.conf) will write to /var/log/journal/. If you or some program delete that directory, systemd will not recreate it automatically and instead will write its logs to /run/systemd/journal in a nonpersistent way. However, the folder will be recreated when you set Storage=persistent and run systemctl restart systemd-journald (or reboot).

Systemd journal classifies messages by Priority level and Facility. Logging classification corresponds to classic Syslog protocol (RFC 5424).

Priority level

A syslog severity code (in systemd called priority) is used to mark the importance of a message RFC 5424 Section 6.2.1.

Value Severity Keyword Description Examples
0 Emergency emerg System is unusable Severe Kernel BUG, systemd dumped core.
This level should not be used by applications.
1 Alert alert Should be corrected immediately Vital subsystem goes out of work. Data loss.
kernel: BUG: unable to handle kernel paging request at ffffc90403238ffc.
2 Critical crit Critical conditions Crashes, coredumps. Like familiar flash:
systemd-coredump[25319]: Process 25310 (plugin-containe) of user 1000 dumped core
Failure in the system primary application, like X11.
3 Error err Error conditions Not severe error reported:
kernel: usb 1-3: 3:1: cannot get freq at ep 0x84,
systemd[1]: Failed unmounting /var.,
libvirtd[1720]: internal error: Failed to initialize a valid firewall backend).
4 Warning warning May indicate that an error will occur if action is not taken. A non-root file system has only 1GB free.
org.freedesktop. Notifications[1860]: (process:5999): Gtk-WARNING **: Locale not supported by C library. Using the fallback 'C' locale.
5 Notice notice Events that are unusual, but not error conditions. systemd[1]: var.mount: Directory /var to mount over is not empty, mounting anyway. gcr-prompter[4997]: Gtk: GtkDialog mapped without a transient parent. This is discouraged.
6 Informational info Normal operational messages that require no action. lvm[585]: 7 logical volume(s) in volume group "archvg" now active.
7 Debug debug Information useful to developers for debugging the application. kdeinit5[1900]: powerdevil: Scheduling inhibition from ":1.14" "firefox" with cookie 13 and reason "screen".

If you cannot find a message on the expected priority level, also search a couple of levels above and below: these rules are recommendations, and the developer of the affected application may have a different perception of the issue's importance from yours.

Facility

A syslog facility code is used to specify the type of program that is logging the message RFC 5424 Section 6.2.1.

Facility code Keyword Description Info
0 kern kernel messages
1 user user-level messages
2 mail mail system Archaic POSIX still supported and sometimes used (for more mail(1))
3 daemon system daemons All daemons, including systemd and its subsystems
4 auth security/authorization messages Also watch for different facility 10
5 syslog messages generated internally by syslogd As it standartized for syslogd, not used by systemd (see facility 3)
6 lpr line printer subsystem (archaic subsystem)
7 news network news subsystem (archaic subsystem)
8 uucp UUCP subsystem (archaic subsystem)
9 clock daemon systemd-timesyncd
10 authpriv security/authorization messages Also watch for different facility 4
11 ftp FTP daemon
12 - NTP subsystem
13 - log audit
14 - log alert
15 cron scheduling daemon
16 local0 local use 0 (local0)
17 local1 local use 1 (local1)
18 local2 local use 2 (local2)
19 local3 local use 3 (local3)
20 local4 local use 4 (local4)
21 local5 local use 5 (local5)
22 local6 local use 6 (local6)
23 local7 local use 7 (local7)

So, useful facilities to watch: 0,1,3,4,9,10,15.

Filtering output

journalctl allows you to filter the output by specific fields. Be aware that if there are many messages to display or filtering of large time span has to be done, the output of this command can be delayed for quite some time.

Tip: While the journal is stored in a binary format, the content of stored messages is not modified. This means it is viewable with strings, for example for recovery in an environment which does not have systemd installed. Example command:
$ strings /mnt/arch/var/log/journal/af4967d77fba44c6b093d0e9862f6ddd/system.journal | grep -i message

Examples:

  • Show all messages from this boot:
    # journalctl -b
    However, often one is interested in messages not from the current, but from the previous boot (e.g. if an unrecoverable system crash happened). This is possible through optional offset parameter of the -b flag: journalctl -b -0 shows messages from the current boot, journalctl -b -1 from the previous boot, journalctl -b -2 from the second previous and so on – you can see the list of boots with their numbers by using journalctl --list-boots. See journalctl(1) for full description, the semantics is much more powerful.
  • Show all messages from date (and optional time):
    # journalctl --since="2012-10-30 18:17:16"
  • Show all messages since 20 minutes ago:
    # journalctl --since "20 min ago"
  • Follow new messages:
    # journalctl -f
  • Show all messages by a specific executable:
    # journalctl /usr/lib/systemd/systemd
  • Show all messages by a specific process:
    # journalctl _PID=1
  • Show all messages by a specific unit:
    # journalctl -u netcfg
  • Show kernel ring buffer:
    # journalctl -k
  • Show only error, critical, and alert priority messages
    # journalctl -p err..alert
    Numbers also can be used, journalctl -p 3..1. If single number/keyword used, journalctl -p 3 - all higher priority levels also included.
  • Show auth.log equivalent by filtering on syslog facility:
    # journalctl SYSLOG_FACILITY=10

See journalctl(1), systemd.journal-fields(7), or Lennart's blog post for details.

Tip: By default, journalctl truncates lines longer than screen width, but in some cases, it may be better to enable wrapping instead of truncating. This can be controlled by the SYSTEMD_LESS environment variable, which contains options passed to less (the default pager) and defaults to FRSXMK (see less(1) and journalctl(1) for details).

By omitting the S option, the output will be wrapped instead of truncated. For example, start journalctl as follows:

$ SYSTEMD_LESS=FRXMK journalctl
If you would like to set this behaviour as default, export the variable from ~/.bashrc or ~/.zshrc.

Journal size limit

If the journal is persistent (non-volatile), its size limit is set to a default value of 10% of the size of the underlying file system but capped to 4 GiB. For example, with /var/log/journal/ located on a 20 GiB partition, journal data may take up to 2 GiB. On a 50 GiB partition, it would max at 4 GiB.

The maximum size of the persistent journal can be controlled by uncommenting and changing the following:

/etc/systemd/journald.conf
SystemMaxUse=50M

It is also possible to use the drop-in snippets configuration override mechanism rather than editing the global configuration file. In this case do not forget to place the overrides under the [Journal] header:

/etc/systemd/journald.conf.d/00-journal-size.conf
[Journal]
SystemMaxUse=50M

Restart the systemd-journald.service after changing this setting to immediately apply the new limit.

See journald.conf(5) for more info.

Clean journal files manually

Journal files can be globally removed from /var/log/journal/ using e.g. rm, or can be trimmed according to various criteria using journalctl. Examples:

  • Remove archived journal files until the disk space they use falls below 100M:
    # journalctl --vacuum-size=100M
  • Make all journal files contain no data older than 2 weeks.
    # journalctl --vacuum-time=2weeks

See journalctl(1) for more info.

Journald in conjunction with syslog

Compatibility with a classic, non-journald aware syslog implementation can be provided by letting systemd forward all messages via the socket /run/systemd/journal/syslog. To make the syslog daemon work with the journal, it has to bind to this socket instead of /dev/log (official announcement).

The default journald.conf for forwarding to the socket is ForwardToSyslog=no to avoid system overhead, because rsyslog or syslog-ng pull the messages from the journal by itself.

See Syslog-ng#Overview and Syslog-ng#syslog-ng and systemd journal, or rsyslog respectively, for details on configuration.

Forward journald to /dev/tty12

Create a drop-in directory /etc/systemd/journald.conf.d and create a fw-tty12.conf file in it:

/etc/systemd/journald.conf.d/fw-tty12.conf
[Journal]
ForwardToConsole=yes
TTYPath=/dev/tty12
MaxLevelConsole=info

Then restart systemd-journald.

Specify a different journal to view

There may be a need to check the logs of another system that is dead in the water, like booting from a live system to recover a production system. In such case, one can mount the disk in e.g. /mnt, and specify the journal path via -D/--directory, like so:

$ journalctl -D /mnt/var/log/journal -xe

Tips and tricks

Enable installed units by default

This article or section needs expansion.

Reason: How does it work with instantiated units? (Discuss in User talk:Wacek/brudnopis systemd)

Arch Linux ships with /usr/lib/systemd/system-preset/99-default.preset containing disable *. This causes systemctl preset to disable all units by default, such that when a new package is installed, the user must manually enable the unit.

If this behavior is not desired, simply create a symlink from /etc/systemd/system-preset/99-default.preset to /dev/null in order to override the configuration file. This will cause systemctl preset to enable all units that get installed—regardless of unit type—unless specified in another file in one systemctl preset's configuration directories. User units are not affected. See systemd.preset(5) for more information.

Note: Enabling all units by default may cause problems with packages that contain two or more mutually exclusive units. systemctl preset is designed to be used by distributions and spins or system administrators. In the case where two conflicting units would be enabled, you should explicitly specify which one is to be disabled in a preset configuration file as specified in the manpage for systemd.preset.

Sandboxing application environments

A unit file can be created as a sandbox to isolate applications and their processes within a hardened virtual environment. systemd leverages namespaces, white-/blacklisting of Capabilities, and control groups to container processes through an extensive execution environment configuration.

The enhancement of an existing systemd unit file with application sandboxing typically requires trial-and-error tests accompanied by the generous use of strace, stderr and journalctl error logging and output facilities. You may want to first search upstream documentation for already done tests to base trials on.

Some examples on how sandboxing with systemd can be deployed:

  • CapabilityBoundingSet defines a whitelisted set of allowed capabilities, but may also be used to blacklist a specific capability for a unit.
    • The CAP_SYS_ADM capability, for example, which should be one of the goals of a secure sandbox: CapabilityBoundingSet=~ CAP_SYS_ADM

Troubleshooting

Investigating systemd errors

As an example, we will investigate an error with systemd-modules-load service:

1. Lets find the systemd services which fail to start at boot time:

$ systemctl --state=failed
systemd-modules-load.service   loaded failed failed  Load Kernel Modules

Another way is to live log systemd messages:

$ journalctl -fp err

2. Ok, we found a problem with systemd-modules-load service. We want to know more:

$ systemctl status systemd-modules-load
systemd-modules-load.service - Load Kernel Modules
   Loaded: loaded (/usr/lib/systemd/system/systemd-modules-load.service; static)
   Active: failed (Result: exit-code) since So 2013-08-25 11:48:13 CEST; 32s ago
     Docs: man:systemd-modules-load.service(8).
           man:modules-load.d(5)
  Process: 15630 ExecStart=/usr/lib/systemd/systemd-modules-load (code=exited, status=1/FAILURE)

If the Process ID is not listed, just restart the failed service with systemctl restart systemd-modules-load

3. Now we have the process id (PID) to investigate this error in depth. Enter the following command with the current Process ID (here: 15630):

$ journalctl _PID=15630
-- Logs begin at Sa 2013-05-25 10:31:12 CEST, end at So 2013-08-25 11:51:17 CEST. --
Aug 25 11:48:13 mypc systemd-modules-load[15630]: Failed to find module 'blacklist usblp'
Aug 25 11:48:13 mypc systemd-modules-load[15630]: Failed to find module 'install usblp /bin/false'

4. We see that some of the kernel module configs have wrong settings. Therefore we have a look at these settings in /etc/modules-load.d/:

$ ls -Al /etc/modules-load.d/
...
-rw-r--r--   1 root root    79  1. Dez 2012  blacklist.conf
-rw-r--r--   1 root root     1  2. Mär 14:30 encrypt.conf
-rw-r--r--   1 root root     3  5. Dez 2012  printing.conf
-rw-r--r--   1 root root     6 14. Jul 11:01 realtek.conf
-rw-r--r--   1 root root    65  2. Jun 23:01 virtualbox.conf
...

5. The Failed to find module 'blacklist usblp' error message might be related to a wrong setting inside of blacklist.conf. Lets deactivate it with inserting a trailing # before each option we found via step 3:

/etc/modules-load.d/blacklist.conf
# blacklist usblp
# install usblp /bin/false

6. Now, try to start systemd-modules-load:

$ systemctl start systemd-modules-load

If it was successful, this should not prompt anything. If you see any error, go back to step 3 and use the new PID for solving the errors left.

If everything is ok, you can verify that the service was started successfully with:

$ systemctl status systemd-modules-load
systemd-modules-load.service - Load Kernel Modules
   Loaded: loaded (/usr/lib/systemd/system/systemd-modules-load.service; static)
   Active: active (exited) since So 2013-08-25 12:22:31 CEST; 34s ago
     Docs: man:systemd-modules-load.service(8)
           man:modules-load.d(5)
 Process: 19005 ExecStart=/usr/lib/systemd/systemd-modules-load (code=exited, status=0/SUCCESS)
Aug 25 12:22:31 mypc systemd[1]: Started Load Kernel Modules.

Diagnosing boot problems

systemd has several options for diagnosing problems with the boot process. See boot debugging for more general instructions and options to capture boot messages before systemd takes over the boot process. Also see the systemd debugging documentation.

Diagnosing problems with a specific service

The factual accuracy of this article or section is disputed.

Reason: This may not catch all errors such as missing libraries. (Discuss in User talk:Alucryd#Plex)

If some systemd service misbehaves and you want to get more information about what is going on, set the SYSTEMD_LOG_LEVEL environment variable to debug. For example, to run the systemd-networkd daemon in debug mode:

# systemctl stop systemd-networkd
# SYSTEMD_LOG_LEVEL=debug /lib/systemd/systemd-networkd

Or, equivalently, modify the service file temporarily for gathering enough output. For example:

/usr/lib/systemd/system/systemd-networkd.service
[Service]
...
Environment=SYSTEMD_LOG_LEVEL=debug
....

If debug information is required long-term, add the variable the regular way.

Shutdown/reboot takes terribly long

If the shutdown process takes a very long time (or seems to freeze) most likely a service not exiting is to blame. systemd waits some time for each service to exit before trying to kill it. To find out if you are affected, see this article.

Short lived processes do not seem to log any output

If journalctl -u foounit does not show any output for a short lived service, look at the PID instead. For example, if systemd-modules-load.service fails, and systemctl status systemd-modules-load shows that it ran as PID 123, then you might be able to see output in the journal for that PID, i.e. journalctl -b _PID=123. Metadata fields for the journal such as _SYSTEMD_UNIT and _COMM are collected asynchronously and rely on the /proc directory for the process existing. Fixing this requires fixing the kernel to provide this data via a socket connection, similar to SCM_CREDENTIALS.

Boot time increasing over time

After using systemd-analyze a number of users have noticed that their boot time has increased significantly in comparison with what it used to be. After using systemd-analyze blame NetworkManager is being reported as taking an unusually large amount of time to start.

The problem for some users has been due to /var/log/journal becoming too large. This may have other impacts on performance, such as for systemctl status or journalctl. As such the solution is to remove every file within the folder (ideally making a backup of it somewhere, at least temporarily) and then setting a journal file size limit as described in #Journal size limit.

systemd-tmpfiles-setup.service fails to start at boot

Starting with systemd 219, /usr/lib/tmpfiles.d/systemd.conf specifies ACL attributes for directories under /var/log/journal and, therefore, requires ACL support to be enabled for the filesystem the journal resides on.

See Access Control Lists#Enabling ACL for instructions on how to enable ACL on the filesystem that houses /var/log/journal.

systemd version printed on boot is not the same as installed package version

You need to regenerate your initramfs and the versions should match.

Tip: A pacman hook can be used to automatically regenerate the initramfs every time systemd is upgraded. See this forum thread and Pacman#Hooks.

Disable emergency mode on remote machine

You may want to disable emergency mode on a remote machine, for example, a virtual machine hosted at Azure or Google Cloud. It is because if emergency mode is triggered, the machine will be blocked from connecting to network.

# systemctl mask emergency.service
# systemctl mask emergency.target

See also